

Ramanova mikroskopie pro strukturální stadium moderních baterií

Ing. Karel Šec, PhD. sec@nicoletcz.cz

Perspektivy analýzy nových materiálů a zdrojů energie Ostrava 2022

thermoscientific

Imaging techniques for	Raman	Ex situ Raman Analysis of Lithium Ion Batteries	
2D/3D morphology		In situ Raman Analysis of Lithium Ion Batteries	
		Raman Analysis of Lithium-Ion Battery Components - Part I: Cathodes	
SEM microCT		Raman Analysis of Lithium-Ion Battery Components - Part II: Anodes	
		Raman Analysis of Lithium-Ion Battery Components - Part III: Electrolytes	
		Investigate batteries with a SEM for better performance	
		Uncovering Internal Structure Defects in Lithium Ion Battery Foils	
Bulk analysis XPS Ion Chromatography ICP-OES GC-MS		Analysis of Electrode Materials for Lithium Ion Batteries	
		Determination of Electrolyte Solution from Lithium Ion Battery	
		Determination of Dissolved Manganese in Lithium/Manganese Oxide Battery Electrolyte	
		Simultaneous Determination of Impurities and Major Elements in Lithium-ion Battery Cathodes	
		Orbitrap GC-MS Technology Provides New Insight Into	

Lithium Ion Battery Degradation

RAN

Chemical, Elemental and Structural Analysis of Batteries

Application Compendium

Informace ve spektrech 🕺 NICOLET CZ

M. - WANN

Raman spektra	Změna	Informace	Příklad
	Charakteristické frekvence	Základní identifikace, Rozlišení polymorfů atd.	Rutile a anatas - TiO ₂ PS, PET atd.
	Intenzita	Kvantitativní analýza	Koncentrace ve vodných roztocích, tloušťka vrstvy v polymeru atd.
	Změna frekvence (vlnočtu)	Stress/strain	520 cm ⁻¹ posun pásu Si
	Změna pološířky pásu	Disorder či defekty	Crystalline 520 cm ⁻¹ and amorphous 480 cm ⁻¹ peak in Si; D band in CM
	Změna intenzity, frekvence i pološířky pásů	Vliv teploty, či tlaku	Phase transformation, melting, crystallization
	Změna poměru pásů (polarizovaná excitace)	Symetrie a orientace molekuly	459 cm ⁻¹ band (A1) of CCl ₄ ; LiNbO ₃ Raman peaks; Isotactic polypropylene films atd.

Analyzing cathodes, anodes, and electrodes with Raman spectroscopy: Improving lithium-ion batteries

- Ramanova mikroskopie (DXR3, DXR3xi)
- Obvykle žádná příprava vzorků
- Vývoj a výzkum, ale i rychlá kontrola kvality
- Ideálně Raman + XPS, SEM
- Prostorové rozlišení mappingu až 0,4 mikrometry
- Speciální elektrochemické cely (anody, katody, elektrolyty, kontrola elektrických podmínek a procesu nabíjení a vybíjení)

Analyzing cathodes, anodes, and electrodes with Raman spectroscopy: Improving lithium-ion batteries: Lithiation of Graphite (anode material)

Process of Li⁺ ions entering the graphitic structure of the anode is called *intercalation*. Intercalation causes changes in the anode structure-primarily a **swelling** of the graphite structure.

Analyzing cathodes, anodes, and electrodes with Raman spectroscopy: Improving lithium-ion batteries: Lithiation of Graphite (anode material)

- ECC-Opto-Std optical electrochemical cell (EL-CELL).
- Enables the investigation of batteries
- Working electrode material is placed under a sapphire (Al₂O₃) window
- Electrode material (graphite powder in this example) is spread onto a copper grid = current collector.
- Working electrode is sandwiched from below, with a glass fiber separator soaked with the electrolyte solution and lithium metal as the counter electrode
- Raman measurement during lithiation (charging) – 480 minutes

Analyzing cathodes, anodes, and electrodes with Raman spectroscopy: Improving lithium-ion batteries: Lithiation of Graphite (anode material)

Analyzing cathodes, anodes, and electrodes with Raman spectroscopy: Improving lithium-ion batteries: Lithiation of Graphite (anode material) – MCR IMAGING

Infračervená nanoskopie a imaging s rozlišením <u>10 nm</u>: nano-FT-IR

Ing. Karel Šec, PhD. sec@nicoletcz.cz

Perspektivy analýzy nových materiálů a zdrojů energie Ostrava 2022

Překonání difrakčního limitu pro infračervenou mikrospektroskopii: technika IR-SNOM

- FT-IR (cca 5 x 5 μm)
- RAMAN (cca 0,4 μm)
- IR-SNOM: 10 nm!

Hlavní aplikace

- Polymerní výzkum a průmysl
- Korozní inženýrství
- Nanostrukturní mapování
- Biomateriály
- Lékařství
- Analýza grafenických materiálů
- Analýza nanovláken
- QC/vývoj polovodičů
- Struktury plasmonů

s-SNOM (scattering-type Scanning Near-field Optical Microscopy)

IR-SNOM: Kombinace AFM a FTIR (IR) mikroskopie

Prostorové rozlišení nezávisí na vlnové délce!

Fokusace laserového paprsku na vodivý AFM hrot

nea spec

- Zachycení světla na vrcholu hrotu vytváří velmi prostorově malý "nano-fokus", který generuje optickou interakci (v tzv. blízkém poli) ve vzorku
- Rozptýlení vysoce lokalizované informace z blízkého pole zachytí optická detekce záření pomocí inovativních interferometrických detekčních schémat – vznikají chemické mapy (imaging) a např. infračervená spektra FT-IR (IR)

IR-SNOM: zdroje záření = UV, VIS, NIR, MID-IR, THz ! Laditelné lasery, kaskádové lasery atd.

Novinka 2022 single widely tunable laser wOPO ONE SOURCE TO RULE THEM ALL!

- Unikátní široký ladící rozsah: 1.4 18.4 μm (7 140 540 cm⁻¹)
- Narrow linewidth <4 cm-1 in the entire tuning range
- Ultrafast frequency sweeping up to 14000 cm-1/sec
- Widest application potential: organické i anorganické vzorky
- Easy to use: fully motorized with fast automatic switching between spectral ranges
- Superior stability: completely integrated, single housing design

Příklad IR-SNOM mapování: PMMA/PS polymer blend: laditelný laser jako zdroj IR záření

PS C-C stretch 1492 cm⁻¹

PMMA C=O 1730 cm⁻¹

Combined (chemical contrast)

Příklad IR-SNOM: mapování vzorku pneumatik

Application

SBR - Styrene butadiene rubber SiO₂ - Silicon dioxide NR - Natural rubber

Příklad IR-SNOM: mapování vzorku pneumatik

Příklad IR-SNOM: mapování vzorku pneumatik

 Statistical analysis e.g. SPIP software

Channel/ compound	Particle diameter (mean)	Area coverage	Particle to particle distance (mean)
SBR	56 ± 34 nm	3.9 %	133 ± 82 nm
SiO ₂	36 ± 19 nm	4.8 %	78 ± 42 nm
NR	47 ± 43 nm	10.9%	92 ± 47 nm

High image quality of s-SNOM scans enables statistical analysis of individual compounds

This study demonstrates the unique capability of infrared near-field nanoscopy combined with Fourier transform infrared (FTIR) spectroscopy to map phases distributions in microcrystals of LixFePO₄, a positive electrode material for Li-ion batteries.

Charging and discharging of the cathode material LiFePO₄ - delithiation

 Li_xFePO_4 – delithiace, SEM images of single LiFePO_4, $Li_{0.5}FePO_4$, and FePO_4 microcrystals, revealing cracks along the crystal surface after delithiation.

Nano-FTIR spectra of purephase LiFePO₄ and FePO₄ microcrystals

AFM topography and corresponding infrared near-field amplitude images acquired at 1087, 1042 and 962 cm⁻¹ for LiFePO₄, Li_{0.5}FePO₄ and FePO₄ crystals

Kombinace FTIR (SNOM) a Raman (TERS)

Kombinace FTIR (SNOM) a Raman (TERS)

correlative TERS and nano-FTIR spectroscopy mode using patented dual beam-path design

•Same spot for nano-FTIR and nano-Raman/PL spectroscopy using modular design and multi-port access to the AFM-tip,

•Maximum TERS signal even with standard AFM probes by simple alignment using strong elastic light scattering from the tip,

•Single user interface for all measurement modes optimized for storing and organizing multidimensional correlative data.

Děkuji za pozornost!

Ing. Karel Šec, PhD. sec@nicoletcz.cz

