Determination of 24 Pesticide Residues in Red Wine Using a QuEChERS Sample Preparation Approach and LC-MS/MS Detection Mike Oliver, Thermo Fisher Scientific, Runcorn, UK # **Key Words** Pesticide residues, red wine, Accucore aQ, QuEChERS, dSPE, LC-MS/MS #### **Abstract** This application presents a fast, easy, and cost-effective method for the determination of 24 pesticide residues in red wine. Sample preparation involves the extraction of pesticides from red wine using the QuEChERS extraction method (AOAC version). The samples then undergo cleanup by dispersive solid-phase extraction (dSPE) using primary secondary amine (PSA) sorbent, which effectively retains organic acids, sugars, and phenolic pigments. A higher quantity of PSA than normally used in the dSPE step is required to sufficiently remove co-extracted phenolic compounds from red wine. The purified extract is subsequently separated using a solid core column prior to detection by a triple quadrupole mass spectrometer. The developed method was applied to commercially available red wine samples to test its applicability. Six out of the fourteen samples tested were found to contain pesticide residues at trace levels. Red wine is one of the most commonly consumed alcoholic beverages in the world with 241.9 million hectolitres consumed globally in 2011 [1]. Red wine is a rich source of phenolic antioxidants and is reported to reduce the risk of diabetes, cancer, Alzheimer's disease, and cardiovascular disease [2, 3]. To improve grape yields it is common practice in vineyards to use pesticides, such as fungicides and insecticides. However, if pesticide residues remain in the grapes prior to the winemaking process they can be transferred to the final product and, if present at significant levels, may be toxic to the consumer. Due to the health risk that pesticides pose to humans it is important to monitor for their presence in food and beverages. No maximum residue levels (MRLs) have been established for pesticide residues in red wine; however, MRLs set for the raw commodity (e.g. wine grapes) can be applied to the processed product (e.g. wine) [4], thus the pesticide residues detected in the red wines tested in this study will be compared to the MRLs in wine grapes set by European Union (EU) [5]. The analysis of pesticide residues in red wine is challenging due to the complexity of the matrix, which contains alcohol, organic acids, sugars, and polyphenols (e.g. anthocyanins, flavonols, and tannins). Traditional sample preparation methods for red wine include liquid-liquid extraction (LLE) with different organic solvents, solid-phase extraction (SPE) with reversed-phase C18 or polymeric sorbents, solid-phase microextraction (SPME), and stir bar sorptive extraction (SBSE). However, these traditional methods have their own limitations, such as being labor intensive, costly (e.g. need for expensive glassware and solvents), using large quantities of organic solvent (environmental impact and disposal costs), requiring extensive method development and optimization, and possibly suffering from a lack of reproducibility or accuracy. The QuEChERS approach (acronym for Quick, Easy, Cheap, Effective, Rugged, and Safe) is a sample preparation technique that was first reported in 2003 by Anastassiades et al. for the analysis of pesticide residues in fruits and vegetables [6]. QuEChERS involves extracting pesticides (or other chemical residues) from a high aqueous sample into an organic solvent (most commonly acetonitrile) with the aid of salts, followed by dispersive solid-phase extraction (dSPE) to remove matrix co-extractives. This application note describes a modified QuEChERS extraction and dSPE cleanup method for the determination of pesticide residues in red wine. LC-MS/MS is used to accurately and quantitatively detect pesticides in red wine at low concentrations. Thermo Scientific™ Accucore™ HPLC columns use Core Enhanced Technology™ to facilitate fast and high efficiency separations. The 2.6 µm diameter particles have a solid core and a porous outer layer. The optimized phase bonding creates a series of high-coverage, robust phases. The tightly controlled 2.6 µm diameter of Accucore particles results in much lower backpressures than typically seen with sub-2 µm materials. Accucore aQ columns are compatible with with 100% aqueous mobile phases and offer special selectivity for polar analytes. # **Experimental Details** #### **Consumables** A 5 mg/mL triphenyl phosphate stock solution in methyl tert-butyl ether was used as internal standard (IS). Twenty-four neat pesticides (>96%) were obtained from a reputable supplier. HPLC grade acetonitrile HPLC grade methanol Glacial acetic acid Formic acid (>95%) Ammonium formate (>99.995%) Ultrapure water #### **Preparation of Pesticide Stock Solutions** A 1 mg/mL stock solution of each of the 24 pesticides was prepared by weighing 10 mg of the neat standard into a 10 mL volumetric flask and diluting to volume with acetonitrile. ### **Preparation of Pesticide Working Solutions** A 2 μ g/mL pesticide working solution was prepared by mixing 100 μ L of each of the 1 mg/mL stock solutions in a 50 mL volumetric flask, and diluting to volume with acetonitrile. A $0.2 \mu g/mL$ pesticide solution was prepared by mixing 1 mL of the $2 \mu g/mL$ pesticide working solution with acetonitrile in a $10 \mu g/mL$ pesticide working solution with acetonitrile. ## **Preparation of Internal Standard Solution** A 30 μ g/mL triphenyl phosphate working solution (IS) was made by mixing 60 μ L of the 5000 μ g/mL triphenyl phosphate solution with acetonitrile in a 10 mL volumetric flask, and diluting to volume with acetonitrile. # **Standard Storage** All stock standards and working solutions were transferred to amber glass vials with Teflon®-lined caps and stored at -20 °C until needed. | Sample Preparation Supplies | Part Number | |---|-------------| | 50 mL polypropylene centrifuge tube | | | Thermo Scientific™ Mylar® pouch containing 6 g magnesium sulfate (MgSO₄) and 1.5 g sodium acetate | 60105-335 | | Thermo Scientific 2 mL centrifuge tube containing 150 mg MgSO ₄ and 150 mg PSA | 60105-350 | | Thermo Scientific™ National™ Target™ 1 mL all-plastic disposable luer-slip syringes | S7510-1 | | Thermo Scientific™ Target2™ 0.2 μm, 22 nylon syringe filters | F2513-2 | | Thermo Scientific 2 mL screw-top autosampler vials | 60180-508 | | Thermo Scientific™ Finntip™ pipet tips, 0.50–250 μL | 14-245-150 | ## **Sample Preparation** The AOAC acetate buffered procedure was selected for sample extractions as it provides higher recovery for pymetrozine compared to the EN15662 citrate buffered or original non-buffered procedure. | AOAC QuEChERS | S extraction | |---------------|--| | 1. | Transfer 15 mL red wine sample into a 50 mL centrifuge tube. | | 2. | Spike with 50 μ L of the 30 μ g/mL triphenyl phosphate solution (corresponding to 100 ng/mL). | | 3. | Add 15 mL of acetonitrile containing 1% acetic acid and vortex for 1 min. | | 4. | Add contents of the Mylar pouch containing 6 g ${\rm MgSO_4}$ and 1.5 g sodium acetate, and shake vigorously on a horizontal shaker or vortex for 1 min. | | 5. | Centrifuge at ≥3,750 rcf for 5 min. | | 6. | The supernatant is now ready for dSPE cleanup. | | dSPE cleanup | | | 1. | Transfer 1 mL of the supernatant into a 2 mL dSPE tube containing 150 mg ${\rm MgSO_4}$ and 150 mg PSA and vortex for 30 s. | | 2. | Centrifuge at ≥15,000 rcf for 5 min. | | 3. | Transfer 0.3 mL of the purified extract into an autosampler vial, add 0.3 mL of reagent water, vortex, and filter with a 0.2 μ m syringe filter. | | 4. | The sample extract is now ready for LC-MS/MS analysis. | | | | # **Preparation of Matrix-Matched Calibration Curve** A six-point matrix-matched calibration curve was prepared using sample extracts obtained from native wine samples prepared according to the procedure described above. The final extracts were spiked with appropriate volumes of pesticide working solution of 0.2 or $2 \mu g/mL$ to give final concentrations corresponding to 2, 10, 40, 100, 200, and 400 ng/mL of pesticides in red wine. | Separation Conditions | | | Part Numbe | | | |------------------------------|---|--|----------------|--|--| | Instrumentation: | Thermo Scientific™ Dionex™ UltiMate™ 3000 LC system | | | | | | Column: | Thermo Scientific Accucore 17326-102
2.6 µm, 100 × 2.1 mm | | | | | | Guard column: | Thermo Scientific TM Accucore TM aQ Defender TM , 17326-0121 2.6 μ m, 10 \times 2.1 mm | | | | | | Run time: | 20 min (inclu | ıding re-equilibration time) | | | | | Column temperature: | 40 °C | | | | | | Injection volume: | 10 μL | | | | | | Autosampler temperature: | 10 °C | | | | | | Wash solvent: | Methanol / u | Itrapure water (1:1, v/v) | | | | | Flow rate: | 200 μL/min | | | | | | Mobile phase A: | 0.3 % formio | acid and 0.1 % ammonia formate in ult | trapure water | | | | Mobile phase B: | 0.1 % formic acid in methanol | | | | | | Preparation of mobile phase: | A: Dissolve 3 mL formic acid and 1 g ammonium formate in 1 L ultrapure water, and sonicate for 30 min. | | | | | | | B: Add 1 mL | formic acid to 1 L methanol and sonica | te for 30 min. | | | | Mobile phase gradient: | Time (min) | B (%) | | | | | | 0.0 | 1 | | | | | | 1.5 | 1 | | | | | | 3.5 | 80 | | | | | | 10.0 | 90 | | | | | | 12.0 | 100 | | | | | | 15.0 | 100 | | | | | | 15.2 | 1 | | | | | | 20.0 | 1 | | | | The mobile phase was diverted to waste from 0 to 0.5 min and 15 to 20 min to prevent ion source contamination. | MS Conditions | | |-------------------------|--| | Instrumentation: | Thermo Scientific™ TSQ Vantage™ tandem mass spectrometer | | lonization mode: | ESI+ | | Spray voltage: | 4000 V | | Vaporizer temperature: | 300 °C | | Sheath gas pressure: | 50 arbitrary units | | Auxiliary gas pressure: | 25 arbitrary units | | Q1 and Q3 peak width: | 0.2 and 0.7 Da | | Collision gas: | Argon at 1.5 mTorr | | Cycle time: | 1 s | | SRM parameters: | Table 1 | | SRM Transitions | | | | | | | | |--------------------------|----------------------|---------------|------------------|------|------------------|------|---------------| | Pesticide | t _R (min) | Precursor lon | Product
Ion 1 | CE 1 | Product
Ion 2 | CE 2 | S-Lens
(V) | | Methamidophos | 1.28 | 142.0 | 124.6 | 14 | 111.6 | 5 | 60 | | Pymetrozine | 1.31 | 218.0 | 104.9 | 18 | 176.0 | 16 | 70 | | Carbendazim | 6.39 | 192.1 | 132.1 | 29 | 160.1 | 17 | 81 | | Dicrotophos | 6.47 | 238.0 | 126.6 | 17 | 108.6 | 33 | 73 | | Acetachlor | 6.48 | 269.4 | 111.9 | 15 | 71.7 | 33 | 72 | | Thiabendazole | 6.61 | 202.1 | 131.1 | 31 | 175.1 | 24 | 103 | | DIMP | 7.30 | 181.3 | 96.6 | 13 | 78.6 | 32 | 44 | | Tebuthiuron | 7.32 | 228.9 | 115.6 | 26 | 171.6 | 17 | 72 | | Simazine | 7.34 | 201.4 | 67.7 | 33 | 103.6 | 24 | 85 | | Carbaryl | 7.41 | 202.0 | 126.6 | 30 | 144.6 | 7 | 40 | | Atrazine | 7.69 | 216.0 | 67.7 | 35 | 173.6 | 16 | 79 | | DEET | 7.72 | 191.9 | 118.6 | 15 | 90.7 | 28 | 92 | | Pyrimethanil | 8.10 | 200.1 | 107.1 | 23 | 183.1 | 22 | 66 | | Malathion | 8.08 | 331.0 | 98.6 | 23 | 126.9 | 12 | 60 | | Bifenazate | 8.21 | 300.9 | 169.8 | 15 | 197.6 | 5 | 51 | | Tebuconazole | 8.71 | 308.0 | 69.7 | 29 | 124.6 | 35 | 97 | | Cyprodinil | 8.78 | 226.1 | 77.0 | 40 | 93.1 | 33 | 88 | | Triphenyl phosphate (IS) | 8.80 | 327.1 | 77.02 | 37 | 152.1 | 33 | 98 | | Diazinone | 8.85 | 305.1 | 153.1 | 15 | 169.1 | 14 | 89 | | Zoxamide | 8.85 | 335.8 | 186.5 | 20 | 158.5 | 38 | 102 | | Pyrazophos | 8.95 | 374.1 | 194.1 | 20 | 222.1 | 20 | 104 | | Profenofos | 9.56 | 372.3 | 302.4 | 19 | 143.5 | 35 | 104 | | Chlorpyrifos | 10.18 | 350.0 | 96.9 | 32 | 197.9 | 17 | 69 | | Abamectin | 11.13 | 890.5 | 304.4 | 18 | 306.7 | 15 | 102 | | Bifenthrin | 12.67 | 440.0 | 165.2 | 39 | 180.4 | 11 | 66 | Table 1: Compound transition details | Data Processing | | |------------------|--| | Data processing: | Thermo Scientific [™] TraceFinder [™] software version 2.0 | Results # Visual Appearance The use of a high amount of PSA (150 mg) in dSPE cleanup was necessary for the efficient removal of organic acids, sugars, and polyphenolic pigments in red wine samples. The purified sample (Figure 1) is a clear colorless extract that is ready for LC-MS/MS analysis (extract can be filtered if desired). Figure 1: Left: dSPE tubes with 150 mg MgSO $_4$ and 150 mg PSA before and after cleanup of 1 mL red wine extract; Right: Red wine extract before and after dSPE cleanup ## Linearity and Limit of Quantitation (LOQ) Matrix-matched calibration curves were prepared at concentrations of 2, 10, 40, 100, 200, and 400 ng/mL. An example of a calibration curve can be found in Figure 2. The responses were linear over the entire concentration range with correlation coefficient (R^2) ≥ 0.9963 (Table 2). The signal-to-noise ratio (S/N) at the lowest calibration level (2 ng/mL) was found to be ≥ 10 for all 24 pesticides. Therefore, the LOQ was estimated to be ≤ 2 ng/mL in this study. Figure 2: Simazine calibration curve | Pesticide | R² | |---------------|--------| | Methamidophos | 0.9981 | | Pymetrozine | 0.9979 | | Carbendazim | 0.9989 | | Dicrotophos | 0.9977 | | Acetachlor | 0.9992 | | Thiabendazole | 0.9966 | | DIMP | 0.9998 | | Tebuthiuron | 0.9996 | | Simazine | 0.9998 | | Carbaryl | 0.9986 | | Atrazine | 0.9990 | | DEET | 0.9996 | | Pyrimethanil | 0.9983 | | Malathion | 0.9997 | | Bifenazate | 0.9987 | | Tebuconazole | 0.9996 | | Cyprodinil | 0.9995 | | Diazinone | 0.9999 | | Zoxamide | 0.9996 | | Pyrazophos | 0.9997 | | Profenofos | 0.9963 | | Chlorpyrifos | 0.9965 | | Abamectin | 0.9968 | | Bifenthrin | 0.9991 | Table 2: Linearity ranges and correlation coefficients (R2) ## Carryover Blank acetonitrile was injected directly after the highest matrix-matched calibration standard (400 ng/mL) to check for sample carryover. No analyte carryover was observed. ## **Accuracy and Precision** Red wine made from organic grapes and determined to be free of pesticide residues was fortified with 10, 50, and 100 ng/mL pesticides (n=6) and prepared according the experimental procedure described above. As outlined in Table 3, the majority of results (\geq 95%) were found to be within an acceptable recovery range of 70–120% and RSD values \leq 20%, demonstrating that this method is suitable for pesticide residue analysis of red wine samples. | Pesticide | 10 ng/n | 10 ng/mL (n=6) | | 50 ng/mL (n=6) | | 100 ng/mL (n=6) | | |-----------------|--------------|----------------|-----------------|----------------|-----------------|-----------------|--| | | Recovery (%) | RSD (%) | Recovery
(%) | RSD (%) | Recovery
(%) | RSD (%) | | | Methamidophos | 78.5 | 6.1 | 84.2 | 2.0 | 91.0 | 11.4 | | | Pymetrozine | 64.5 | 5.5 | 61.9 | 2.4 | 63.3 | 12.1 | | | Carbendazim | 66.3 | 4.1 | 66.2 | 4.1 | 53.4 | 19.6 | | | Dicrotophos | 82.0 | 2.4 | 80.2 | 1.0 | 81.4 | 13.6 | | | Acetachlor | 85.3 | 3.2 | 88.9 | 2.4 | 84.5 | 13.5 | | | Thiabendazole | 78.8 | 4.6 | 75.4 | 5.9 | 62.9 | 19.6 | | | DIMP | 95.8 | 2.9 | 94.0 | 4.3 | 91.4 | 13.2 | | | Tebuthiuron | 87.3 | 2.1 | 87.3 | 2.1 | 89.6 | 12.0 | | | Simazine | 97.7 | 2.5 | 99.3 | 2.5 | 92.2 | 11.4 | | | Carbaryl | 95.5 | 3.3 | 91.6 | 1.5 | 90.0 | 10.5 | | | Atrazine | 91.0 | 1.8 | 90.1 | 1.9 | 89.1 | 5.9 | | | DEET | 93.7 | 1.9 | 93.9 | 2.6 | 90.7 | 8.1 | | | Pyrimethanil | 94.2 | 3.1 | 91.0 | 2.1 | 82.7 | 13.7 | | | Malathion | 99.0 | 2.4 | 96.7 | 2.7 | 89.1 | 11.4 | | | Bifenazate | 103.3 | 3.4 | 97.5 | 3.0 | 84.5 | 11.3 | | | Tebuconazole | 95.0 | 3.0 | 94.1 | 3.1 | 83.6 | 8.4 | | | Cyprodinil | 98.7 | 2.3 | 96.6 | 2.3 | 90.4 | 5.2 | | | Diazinone | 98.5 | 2.5 | 100.1 | 3.5 | 80.2 | 17.6 | | | Zoxamide | 101.7 | 1.7 | 101.1 | 2.5 | 91.8 | 6.5 | | | Pyrazophos | 95.5 | 2.5 | 96.3 | 3.3 | 79.9 | 18.5 | | | Profenofos | 91.8 | 4.8 | 88.4 | 2.3 | 91.8 | 7.9 | | | Chlorpyrifos | 95.5 | 7.2 | 95.1 | 3.3 | 75.8 | 20.8 | | | Abamectin | 92.5 | 2.6 | 88.7 | 3.7 | 79.3 | 14.5 | | | Bifenthrin | 93.2 | 4.2 | 93.3 | 5.9 | 87.8 | 12.5 | | | Overall average | 90.6 | 3.3 | 89.7 | 2.9 | 83.2 | 12.5 | | Table 3: Accuracy and precision data of the 24 pesticides fortified into organic red wine at three concentrations ## **Application to Real Samples** Fourteen commercially available bottles of red wine from various geographical regions around the world were tested in duplicate using the developed method. Of the fourteen wines tested, six samples (#2, #9, #11–14) were found to contain one or more pesticides, namely carbendazim, pyrimethanil, bifenazate, tebuconazole, and cyprodinil (Table 4). The concentrations of pesticides detected ranged from 2.2 to 13 ng/mL (equal to 0.0022 to 0.013 mg/kg), which were approximately 100 to 1000 times lower than the MRLs set for wine grapes by the EU [5]. | Pesticide Detected | Red Wine Sample | Concentration (ng/mL) | |--------------------|-----------------|-----------------------| | Carbendazim | #12 | 8.0 | | Garbenuazim | #13 | 5.3 | | Pyrimethanil | #9 | 13 | | Bifenazate | #2 | 3.0 | | | #14 | 2.2 | | Tebuconazole | #11 | 2.8 | | | #14 | 7.4 | | Cyprodinil | #9 | 3.2 | | | #14 | 3.8 | Table 4: Red wine samples and pesticides detected. For samples not listed, no pesticides were detected or the concentration was determined to be <LOQ (2 ng/mL). ## Chromatograms See Figure 3 for chromatograms of a red wine sample fortified with pesticides at 50 ng/mL. Figure 3: Chromatograms of a red wine sample spiked at 50 ng/mL Figure 3 (continued): Chromatograms of a red wine sample spiked at 50 $\mbox{ng/mL}$ ## Conclusion - A fast, easy and cost-effective method has been successfully developed using the QuEChERS-based approach. - An increase in the amount of PSA (150 mg) in the dSPE cleanup was found to be necessary for the efficient removal of organic acids, sugars, and pigments that are present in wine, and produce a clean extract. - LC-MS/MS was used for the quantitative analysis of 24 pesticides. The Accucore aQ HPLC columns gave good resolution and peak shapes for all of the pesticides. - Good linearity, low LOQs, and satisfactory accuracy and precision data were obtained, indicating that this method is suitable for pesticide residue analysis in red wine. - Fourteen commercially available red wine samples were analyzed to test the applicability of the method. Six samples were found to contain one or more pesticides but at concentrations (0.0022–0.013 mg/kg) far below the MRLs in wine grapes set by EU. #### Reference - [1] http://www.oiv.int/oiv/info/ennoteconjoncture2012 - [2] http://www.mayoclinic.com/health/red-wine/HB00089 - [3] http://healthyeating.sfgate.com/benefits-red-wine-consumption-7689.html - [4] http://www.awri.com.au/industry_support/viticulture/agrochemicals/mrls/#MRLs for grapes or wine - [5] http://ec.europa.eu/sanco_pesticides/public/index.cfm?event=commodity.resultat - [6] M. Anastassiades, S.J. Lehotay, D. Stajnbaher and F.J. Schenck, J. AOAC Int. 2003, 86(2), 412-431. ## thermoscientific.com/quechers © 2013 Thermo Fisher Scientific Inc. All rights reserved. Teflon is a registered trademark of E.I. DuPont Nemours & Co. Mylar is a registered trademark of DuPont Teijin Films U.S. Limited Partnership. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. USA and Canada +1 800 332 3331 France +33 (0)1 60 92 48 34 Germany +49 (0) 2423 9431 20 or 21 United Kingdom +44 (0)1928 534110 Japan +81 3 5826 1615 China +86 21 68654588 +86 10 84193588 +86 20 83145199 800 810 5118 India +91 22 6742 9494 +91 27 1766 2352 Australia 1 300 735 292 (free call domestic) New Zealand 0800 933 966 (free call domestic) All Other Enquiries +44 (0) 1928 534 050 **Technical Support** North America +1 800 332 3331 Outside North America +44 (0) 1928 534 440