### thermo scientific



### Acclaim columns overview

Columns for challenging separation needs



## Broad range of HPLC and UHPLC columns



Broad range of HPLC and UHPLC columns for challenging separation needs

#### General-purpose RP

Separate complex samples with high surface area columns (C18, etc)

Mixed-Mode

Retain multiple types of analytes on a single column

• Application-specific

Unique columns for specific applications: surfactants, organic acids, pesticides, aminoglycosides, explosive residues

• HILIC

Designed for the separation of polar compounds

## Contents

| Acclaim column families at a glance           | 4  |
|-----------------------------------------------|----|
| Selecting an Acclaim column                   | 5  |
| Acclaim reversed-phase, HILIC and SEC columns | 8  |
| Acclaim Mixed-Mode HPLC columns               | 32 |
| Acclaim application-specific<br>HPLC columns  | 42 |
| Acclaim column selection guide                | 59 |
| Ordering information                          | 60 |

# Acclaim column families at a glance

Thermo Scientific<sup>™</sup> Acclaim<sup>™</sup> columns are designed for high-efficiency high performance liquid chromatography (HPLC) separations. Their unique functionalities set them apart for difficult and complex separations, often providing resolution of compounds not possible by other conventional HPLC columns.

Surface chemistries include standard functionalities such as Thermo Scientific<sup>™</sup> Acclaim<sup>™</sup> 120 C18, C8, Phenyl, Polar Advantage, polar embedded phases, HILIC, as well as specialty columns: Mixed-Mode functionalities (i.e. Thermo Scientific<sup>™</sup> Acclaim<sup>™</sup> Trinity P1 and P2 columns), application-specific phases (organic acids, surfactants, pesticides, pollutants, etc.) and size exclusion columns (SEC). Further, some Acclaim columns have been optimized to work under the very high pressure, ultra high performance liquid chromatography (UHPLC) requirements of Thermo Scientific<sup>™</sup> Vanquish<sup>™</sup> UHPLC instrument.

| General purpose                                                                                                                                                                                                               | Mixed-Mode                                                                                                                                                                          | Application-specific                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Start here for separations based<br>on hydrophobic separations. These<br>surface area Acclaim columns<br>provides outstanding resolution for<br>complicated matrix, large number                                            | <ul> <li>Turn to Mixed-Mode phases when you<br/>have a mix of ionic and hydrophobic<br/>compounds or hydrophilic compounds.</li> <li>They are available in both dual and</li> </ul> | <ul> <li>Take the guess-work out of your<br/>chromatography columns selection.<br/>These columns are designed and tested<br/>for specific applications.</li> </ul> |
| of peaks, or purely need more retention.                                                                                                                                                                                      | triple retention modes. Included are<br>anionic/cationic/reversed-phase/HILIC<br>functionalities. The bonding has been                                                              | <ul> <li>Columns for food/beverage, consumer<br/>goods testing, and environmental<br/>testing. For those customers who run</li> </ul>                              |
| <ul> <li>Included are reversed-phase for<br/>hydrophobic interaction, HILIC<br/>for the retention or separation</li> </ul>                                                                                                    | optimized for spacial distancing for greater resolution.                                                                                                                            | specific types of separations, these<br>applications specific columns are the<br>easy choice.                                                                      |
| of hydrophilic compounds such<br>catecholamines other polar<br>compounds (specific).                                                                                                                                          | <ul> <li>Over 10 years of experience for<br/>pharmaceutical APIs and counterions,<br/>including those required in standard<br/>operating procedures.</li> </ul>                     | • Wide range of column sizes to meet your chromatographic needs                                                                                                    |
| • SEC when you are looking for size<br>exclusion separations, these unique<br>columns have a polymer backbone<br>eliminating secondary separation<br>that can occur on silica media. They<br>are robust with a wide pH range. |                                                                                                                                                                                     |                                                                                                                                                                    |



# Selecting an Acclaim column

Choosing the column chemistry is the first step in identifying the column of choice. This is key in achieving the resolution and selectivity for the desired separation. Particle size is important in determining the speed of a separation and column dimensions are important in optimizing resolution while also impacting solvent consumption and sensitivity requirements.

#### What are the goals of the separation?

- Critical peaks requiring resolution
- Speed of analysis
- Solvent consumption/minimal waste
- Sensitivity requirements

### Choosing the column chemistry

When a chromatographer designs a separation, selectivity of the stationary phase is the first of many factors that must be considered. Selectivity is the result of the differing interactions between each analyte and the stationary phase. Determining the column with optimal selectivity is the essential starting point. This determination depends on the nature of the desired separation. The easiest first step in choosing a column is to identify whether there is a column designed specifically for your separation. This can be readily established if the column is named according to its application, as in the case of some of the Acclaim columns. Thus, if you are separating surfactants, the Thermo Scientific<sup>™</sup> Acclaim<sup>™</sup> Surfactant Plus column is the best first choice; likewise Thermo Scientific<sup>™</sup> Acclaim<sup>™</sup> Explosives column is used for Environmental Protection Agency (EPA) Method 8330, and the Thermo Scientific<sup>™</sup> Acclaim<sup>™</sup> Organic Acid column is for organic acid analysis.

If there is no specialty column for your application, then you will need some understanding of chemistry of your sample to choose the best column chemistry. For those cases where the nature of the sample is completely unknown, the best first choice is usually the C18 column because of its excellent peak efficiency, low silanol activity, and ability to separate many organic molecules. Other chemistries are available and can provide better chromatography based on the properties.

#### Type of bonding

The bonding chemistry of the column is defined by the functional groups attached to the particle substrate, as well as the substrate itself. In reversed-phase chromatography, the mode of separation is hydrophobic interaction, and the functional groups are either Thermo Scientific<sup>™</sup> Acclaim<sup>™</sup> C18, C8, C30, Polar Advantage (PA and PA2) or Phenyl. Other chemistries include HILIC, size exclusion chromatography and Mixed-Mode chromatography.

| RP    | Reversed-phase<br>chromatography              | Separation is based on hydrophobic interaction of the column surface chemistry and hydrophobicity of the molecules being separated. The stronger the hydrophobicity of the molecule – the more it will bind to the stationary phase |
|-------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HILIC | Hydrophilic interaction liquid chromatography | Retains and separates polar, hydrophilic compounds                                                                                                                                                                                  |
| ММ    | Mixed-Mode<br>chromatography                  | The stationary phase has more than one major form of retention, i.e., reversed-phase and ion-exchange                                                                                                                               |
| SEC   | Size exclusion<br>chromatography              | Separation is based on molecular size                                                                                                                                                                                               |

### Choosing particle size and column format

Particle size affects peak efficiency, which in turn impacts resolution or the amount of space between peaks and the speed of the separation. Smaller particles sizes give higher efficiencies and higher resolution than larger ones. However, at the same flow rate, the backpressure will be greater using smaller particle sizes than larger ones. Therefore, smaller particle sizes are recommended for fast analyses, using shorter columns.

Acclaim columns are available packed with either 2.2  $\mu$ m, 3  $\mu$ m or 5  $\mu$ m bonded silica. When using isocratic separation conditions, it can be expected that a column packed with 3  $\mu$ m material will give about 1.7 times the separation efficiency as a column of identical proportions, packed with 5  $\mu$ m material, but the backpressure will be almost three times as high on the 3  $\mu$ m column at the same linear velocity. Similarly, for going from 3  $\mu$ m to 2.2  $\mu$ m, the efficiency increases 1.4 times, the resolution 1.2 times, and the pressure 1.9 times.



#### **Column diameter**

Select a column diameter according to your requirements for sample size, solvent consumption and sensitivity. Column diameter impacts sensitivity (narrow columns provide better sensitivity), loading capacity (wider is better for larger sample volumes and for purifying samples), solvent consumption (narrow columns use less solvent) and backpressure (narrow columns exhibit higher backpressure so you will need to decrease the flow rate). Scale the flow rate by the square of the column diameter to preserve backpressure and retention time. To gain the full benefits of smaller column diameters, your HPLC instrumentation needs to be optimized for the flow rate.

| Column diameter selection    |                                                                                      |
|------------------------------|--------------------------------------------------------------------------------------|
| Column diameter              | Application                                                                          |
| 2.1 mm internal diameter     | High-sensitivity or limited volume samples. Use with low dead-volume instrumentation |
| 3.0 mm internal diameter     | Lower solvent consumption. Use with standard instrumentation                         |
| 4.0-4.6 mm internal diameter | Standard formats. Use with standard instrumentation                                  |

#### **Column diameter selection**

Your system capabilities determine which size columns you are most likely to use. These suggested dimensions are for initial method development. Based on the general considerations, you might decide to use columns that are either longer or shorter these. Your optimized final method might use some other column or particle size.

| System                                | Pressure  | Particle | Column size                              | Flow             |
|---------------------------------------|-----------|----------|------------------------------------------|------------------|
| Classic LC                            | ≤400 bar  | 3 – 5 µm | 4.6 x 250 mm, 5 μm<br>4.6 x 150 mm, 3 μm | 1 – 2 ml/min     |
| Modern LC                             | ≤600 bar  | 2 – 3 µm | 3 x 150 mm, 3 μm<br>2.1 x 150 mm         | 0.3 – 0.5 ml/min |
| Thermo Scientific™<br>Vanquish™ UHPLC | ≤1500 bar | ≤ 2.2 µm | 2.1 x 150 mm<br>2.1 x 250 mm             | 0.4 – 0.8 ml/min |

#### Mobile phase considerations

The effect of mobile phase composition on column lifetime should be part of the consideration for designing a method. Use the highest practical quality of water, solvent, and buffer components; HPLC-grade material has low UV absorbance and is submicron-filtered by the manufacturer. To prevent fouling of your Acclaim column, use mobile phases that have been filtered through a filter that is 0.5 µm or smaller.





# Acclaim reversed-phase, HILIC and SEC columns

# Acclaim reversed-phase, HILIC and SEC columns

#### **Reversed-phase chromatography**

Reversed-phase chromatography is the most widely used HPLC separation mechanism. Functional groups C18, C8, C30 and Phenyl are attached to the silica substrate either via a single attachment (monomeric bonding), or via multiple attachments (multidentate bonding) such as the Acclaim Polar Advantage II (PA2) column. Monomeric bonded phases provide higher column efficiencies, than polymeric phases, but polymeric phases are very stable under pH extremes.

These functional groups are hydrophobic and attract hydrophobic molecules in the sample. For example, Catechins are a class of polyphenolic flavanols widely distributed in plants, notably tea and cacao. As can be seen in this selectivity comparison, stationary phases with a mixture of polar and revered-phase retention provide the best separation. The Acclaim PA2 column is resistant to the acidic conditions usually preferred for separating polyphenols and gives the best separation.



#### Carbon load and end-capping

For reversed-phase chemistries, the percent (%) carbon is a rough guide to the capacity of the column. Given the same type of silica the higher carbon load is an indicator of surface coverage. Phases with higher carbon loads are more strongly hydrophobic, resulting in higher capacity, longer retention times, and often better resolution.

When the functional groups are attached to the silica particle, not all silanol groups on the surface of the silica particle are covered. Free silanol groups will interact with polar analytes, altering the retention times and often causing peak tailing for organic bases. To minimize these secondary interactions, the free silanol groups are end-capped. All Acclaim column packings are end-capped.

### Choosing the pore size and surface area

Select a pore size appropriate for the molecular weight of your sample analytes. The pore size should be large enough to allow the sample molecules of interest to enter and pass through. If the pore size is too small, size exclusion effects can cause unwanted peak broadening.

#### MW < 15 kDa: use Acclaim 120, Acclaim PA or Acclaim PA2 MW < 150 kDa: use Acclaim 300

Generally speaking, the smaller the pore size, the greater the number of pores and the higher the surface area. The higher the surface area, the higher the capacity of the packing material. This means that the retention time of a given analyte will be shorter on a wide-pore material than on a narrow-pore one.



Larger pores = Smaller surface area

Smaller pores = Larger surface area

#### **HILIC chromatography**

HILIC is the recommended mode of separating polar compounds. These compounds are unretained under conventional reversed-phase conditions, but are retained using HILIC columns, without the requirement for ion-pair additives in the mobile phase. In this technique the stationary phase is polar and the aqueous portion of the mobile phase acts as the stronger solvent. Thus, the polar analytes can be retained and separated, even with 5-20% aqueous mobile phase.

#### Size exclusion chromatography (SEC)

Size exclusion chromatography (SEC) is a major mode of HPLC that employs porous particles in the column to separate molecules by virtue of their size in solution. Using isocratic conditions, the small molecules flow into the substrate pores and move slower than the large molecules, which are too big to move into the pores. The result is a separation of the molecules based on size.

#### Acclaim reversed-phase and general purpose HPLC columns

| Columns                             | Description                                                                                                                                                              |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Acclaim 120 C18                     | High-efficiency reversed-phase columns for small molecule and complex mixtures separations, including liquid chromatography mass spektrometry (LC-MS)                    |  |
| Acclaim 120 C8                      | Reversed-phase columns for small molecule with intermediate hydrophobic retention                                                                                        |  |
| Acclaim 300 C18                     | Wide-pore columns for LC-MS life science applications; protein and peptides                                                                                              |  |
| Acclaim Polar<br>Advantage (PA)     | Polar-embedded reversed-phase columns for separating polar and nonpolar analytes with 100% aqueous mobile phase compatibility                                            |  |
| Acclaim Polar<br>Advantage II (PA2) | Polar-embedded columns with enhanced hydrolytic stability pH 1.5 – 10, excellent for polar and non-polar analytes with 100% aqueous mobile phase compatibility and LC-MS |  |
| Acclaim C30                         | /ery high hydrophobic retention; good for separating structurally related isomers                                                                                        |  |
| Acclaim Phenyl-1                    | Polar reversed-phase columns with high aromatic selectivity                                                                                                              |  |
| Acclaim HILIC-10                    | Designed for unique selectivity of hydrophilic molecules                                                                                                                 |  |
| Acclaim SEC-1000<br>Acclaim SEC-300 | Separation of water-soluble polymers using resin based columns                                                                                                           |  |

#### Acclaim reversed-phase and general purpose HPLC columns specifications

|                          | Acclaim<br>120 C18     | Acclaim<br>120 C8      | Acclaim<br>300 C18   | Acclaim<br>PA           | Acclaim<br>PA2         | Acclaim<br>C30     | Acclaim<br>Phenyl-1 | Acclaim<br>HILIC-10 |
|--------------------------|------------------------|------------------------|----------------------|-------------------------|------------------------|--------------------|---------------------|---------------------|
| Bonded phase             | Octadecyl-<br>silane   | Octyl-<br>silane       | Octadecyl-<br>silane | Embedded<br>sulfonamide | Embedded<br>amide      | C30<br>alkylsilane | Phenyl              | Proprietary         |
| USP type                 | L1                     | L7                     | L1                   | L60                     | L60                    | L62                | L11                 | -                   |
| End-capped               | Yes                    | Yes                    | Yes                  | Yes                     | Yes                    | Proprietary        | Yes                 | No                  |
| Starting material        |                        |                        |                      | Ultrapure               | e silica               |                    |                     |                     |
| Particle shape           |                        |                        |                      | Sphei                   | rical                  |                    |                     |                     |
| Particle sizes           | 2.2 μm<br>3 μm<br>5 μm | 2.2 μm<br>3 μm<br>5 μm | 3 µm                 | 2.2 μm<br>3 μm<br>5 μm  | 2.2 μm<br>3 μm<br>5 μm | 3 μm<br>5 μm       | 3 μm<br>5 μm        | 3 µm<br>5 µm        |
| Average pore<br>diameter | 120 Å                  | 120 Å                  | 120 Å                | 120 Å                   | 120 Å                  | 200 Å              | 120 Å               | 120 Å               |
| Surface area             | 300 m²/g               | 300 m²/g               | 100 m²/g             | 300 m²/g                | 300 m²/g               | 200 m²/g           | 300 m²/g            | 300 m²/g            |
| Total carbon content     | 18%                    | 11%                    | 7%                   | 17%                     | 17%                    | 13%                | -                   | -                   |
| pH range                 | 2–8                    | 2–8                    | 2–8                  | 2–8                     | 1.5–10                 | 2–8                | 2–8                 | 2–8                 |

#### Acclaim SEC specifications

| Columns                   | Acclaim SEC-300                    | Acclaim SEC-1000                   |
|---------------------------|------------------------------------|------------------------------------|
| Substrate                 | Hydrophilic polymethacrylate resin | Hydrophilic polymethacrylate resin |
| Particle Shape            | Spherical                          | Spherical                          |
| Particle Size             | 5 µm                               | 7 μm                               |
| Pore Size                 | 300 Å (multi-pore)                 | 1000 Å (multi-pore)                |
| Separation range for PEO* | 100 – 50,000 Daltons               | 1,000 - 1,000,000 Daltons          |
| Exclusion limit for PEO*  | 50,000 – 150,000 Daltons           | 3,000,000 - 7,500,000 Daltons      |
| pH Range                  | 2–12                               | 2–12                               |

\*PEO = polyethylene oxides

### Acclaim 120 C18 columns

### High performance reversed-phase columns for the separation of small molecules

Thermo Scientific Acclaim 120 C18 series columns feature a densely bonded monolayer of octadecyldimethylsiloxane on a highly pure, spherical, silica substrate with 120 Å pore structure.

Acclaim 120 C18 columns are the classic reversed-phase columns. These columns are recommended for general-purpose reversed-phase applications where high surface coverage, low silanol activity, and excellent efficiency are required. Acclaim 120 C18 columns feature:

- Highly efficient, symmetrical peaks for difficult basic and chelating analytes
- Ultrapure silica substrate
- Optimized surface pretreatment, proprietary high density bonding process, and double endcapping
- Reliability designed into the manufacturing process and assured by thorough and appropriate testing
- High hydrophobicity and low polarity yield high selectivity for hydrophobic substances
- LC-MS compatible
- Wide range of applications in pharmaceutical, environmental, food testing, and product-quality testing for small molecules



| Mobile phase     | 200 mM HOAc in 10% (v/v) MeOH                                                           |
|------------------|-----------------------------------------------------------------------------------------|
| Flow rate        | (A) 1.00 mL/min<br>(B) 0.41 mL/min<br>(C) 0.82 mL/min                                   |
| Injection volume | (Α) 10 μL<br>(Β) 1.2 μL<br>(C) 1.2 μL                                                   |
| Detection        | UV, 254 nm<br>(A) 1 Hz data rate<br>(B) 5 Hz data rate<br>(C) 10 Hz data rate           |
| Temperature      | 20 °C                                                                                   |
| Sample           | Commercial vanilla extract in 40% ethanol, filtered                                     |
| Reference        | AOAC official method 990.25                                                             |
| Analytes         | 1. p-Hydroxybenzoic acid<br>2. p-Hydroxybenzaldehyde<br>3. Vanillic acid<br>4. Vanillin |



#### **LC-MS** compatibility

Acclaim 120 C18 columns are LC-MS compatible with very low bleed. Out of the box, this column is ready to use after only a few minutes of conditioning with solvent. The same low bleed is attained over the entire pH range of 2–8.

| Reproducible results of Peptide Map overlay of five chromatograms for the separation of digested infliximab | Reproducible results of Peptide Map overlay of five chromatograms for the separation of digested inf | fliximab |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|

| Mobile phase | (B  | ·              | % formic acio<br>onitrile (10:90<br>id |    | 12.94<br>6.29 11.73 16.4<br>11.17<br>7.25         | 18.53<br>19.80 21.88 | Column A (n=5)                          |
|--------------|-----|----------------|----------------------------------------|----|---------------------------------------------------|----------------------|-----------------------------------------|
| Flow rate    | 0.4 | 4 mL/min       |                                        |    | 3.75 4.74                                         |                      | 30.85                                   |
| Detection    | U١  | /, 214 nm      |                                        |    |                                                   |                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Temperature  | 60  | ) °C, forced a | air                                    |    | 5.76 4.75 7.26<br>6.31 11.19<br>11.75 13.52 16.50 |                      | 30.88<br>Column B (n=5)                 |
| Time (min)   | 0   | 40             | 40.1                                   | 43 | 12.97                                             | 18.56 19.83 21.91    |                                         |
| A%           | 99  | 55             | 99                                     | 99 | 10.02                                             | 20 25                | 30 3                                    |
| B%           | 1   | 45             | 1                                      | 1  | 5 10 15                                           | 20 25<br>Minutes     | 30 3                                    |

.....

#### Isocratic resolution of antihistamines and their impurities on Acclaim 120 C18 column

| Acclaim 120 C18 column, 5 μm, 4.6 × 150 mm |                                                                                                                         |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase                               | (A) 50 mM sodium acetate<br>(B) Methanol                                                                                |  |  |
| Isocratic                                  | (A) 20%<br>(B) 80%                                                                                                      |  |  |
| Detection                                  | UV, 249 nm                                                                                                              |  |  |
| Temperature                                | 25 °C                                                                                                                   |  |  |
| Peaks                                      | <ol> <li>Thenyldiamine HCI</li> <li>Phenothiazine</li> <li>Promethazine HCI</li> <li>Pyrrobutamine phosphate</li> </ol> |  |  |



#### Separation of basic drugs on Acclaim 120 C18 column in various concentrations

| Acclaim 120 C18 column, 5 μm, 4.6 × 150 mm |                                                                                                         |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase                               | 80/20 methanol/30 mM phosphate, pH 6                                                                    |  |  |
| Flow rate                                  | 1 mL/min                                                                                                |  |  |
| Injection volume                           | 5 μL                                                                                                    |  |  |
| Detection                                  | UV, 220 nm                                                                                              |  |  |
| Temperature                                | 30 °C                                                                                                   |  |  |
| Amitriptyline mass                         | Trace A: 1200 ng<br>Trace B: 400 ng (normalized peak height)<br>Trace C: 94 ng (normalized peak height) |  |  |
| Peaks                                      | 1. Uracil<br>2. Propranolol<br>3. Toluene<br>4. Doxepin<br>5. Amitriptyline                             |  |  |

Note: The high performance of this column is maintained as the sample is diluted



#### Nitrofuran antibiotic residues in animal feed on Acclaim 120 C18 column

| Acclaim 120 C18 column, 5μm, 4.6 × 150 mm |                                                                                                                                                                                                                                                                                                             |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase                              | Acetonitrile:10 mM ammonium acetate<br>pH 5.0, 20:80 v/v; isocratic                                                                                                                                                                                                                                         |  |  |
| Flow rate                                 | 1.0 mL/min                                                                                                                                                                                                                                                                                                  |  |  |
| Injection volume                          | 20 µL                                                                                                                                                                                                                                                                                                       |  |  |
| Detection                                 | UV, 365 nm                                                                                                                                                                                                                                                                                                  |  |  |
| Temperature                               | 30 °C                                                                                                                                                                                                                                                                                                       |  |  |
| Sample                                    | <ol> <li>3.0 g guinea pig feed in a 50 mL centrifuge tube</li> <li>Add 9 mL water and let stand 5 min</li> <li>Add 21 mL methanol:acetonitrile 1:1 and extract for 30 min.</li> <li>Pass through cleanup cartridge containing 1.7 g of neutral alumina; discard first 1.7 mL, retain next 3.5 mL</li> </ol> |  |  |
| Peaks                                     | <ol> <li>Nitrofurazone</li> <li>Nitrofurantoin</li> <li>Furazolidone</li> <li>Furaltadone</li> </ol>                                                                                                                                                                                                        |  |  |



.....

Reference: R.J. McCracken, D.G. Kennedy; J. Chromatogr. A, 1997, 771, 349–354.

#### Bitter principles in beer on Acclaim 120 C18 column

| Acclaim 120 C18  | column, 5µm, 4.6 × 150 mm                                                                                                                                                                                                                                                                              |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase     | 75% methanol, 24% water, 1% phosphoric acid (v/v/v)                                                                                                                                                                                                                                                    |  |  |
| Flow rate        | 1.2 mL/min                                                                                                                                                                                                                                                                                             |  |  |
| Injection volume | 25 µL                                                                                                                                                                                                                                                                                                  |  |  |
| Detection        | UV, 270 nm                                                                                                                                                                                                                                                                                             |  |  |
| Temperature      | TCC-100 thermostat, 35 °C                                                                                                                                                                                                                                                                              |  |  |
| Sample           | Extraction per ASBC<br>• 10 mL beer + 1 mL 3N HCl + 50 µL 1-octanol +<br>20 mL iso-octane<br>• Shake vigorously<br>• Centrifuge to separate phases<br>• Bitterness units = 50 × A275<br>For HPLC<br>• Evaporate dry and reconstitute in mobile phase<br><i>Obtained from Am. Soc. Brewing chemists</i> |  |  |
| Peaks            | <ol> <li>Isocohumulone</li> <li>Mixed isohumulone congeners</li> <li>Isoadhumulone</li> </ol>                                                                                                                                                                                                          |  |  |



### Acclaim 120 C8 columns

### High performance reversed-phase columns with intermediate hydrophobic retention

Thermo Scientific Acclaim 120 C8 series columns feature a densely bonded monolayer of octyldimethylsiloxane on a highly pure, spherical silica substrate with a 120 Å pore structure.

Acclaim 120 C8 columns employ the same bonding chemistry and substrate as C18, and therefore features the same high standards of efficiency, coverage, and silanol activity. Acclaim 120 C8 column features:

- Similar selectivity to C18 columns, but with reduced retention
- Highly efficient, symmetrical peaks with difficult basic and chelating analytes
- Ultrapure silica substrate
- Optimized surface pretreatment, proprietary high-density bonding process, and vigorous endcapping
- Reliability designed into the manufacturing process and assured by thorough and appropriate testing
- Less hydrophobic, less retentive than C18
- LC-MS compatible
- Excellent performance for basic pharmaceuticals and environmental samples

#### Triclosan in toothpaste

#### Acclaim RSLC C8 column, 2.2 $\mu m,$ 50 x 2.1 mm Isocratic, 15% buffer, (2 mM Ammonium acetate Mobile phase pH 5), 85% methanol (v/v) Flow rate 0.2 mL/min Injection volume 1.0 µL Diode array detector, 281 nm, 10 Hz, 0.1 s resp. Detection time and spectra 200-400 nm Temperature 50 °C Toothpaste containing 0.3% triclosan Sample 1. Saccharin Analytes 2. Triclosan





Isocratic separation of six cardiac antiarrhythmic drugs (beta-blockers) on Acclaim 120 C8 column

| Acclaim 120 C8 cc | Acclaim 120 C8 columns, 3 μm, 4.6 × 150 mm                                                                                                                                                                    |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Mobile phase      | 51/49 w/w MeOH/<br>25 mM phosphate, pH 7.0                                                                                                                                                                    |  |  |  |
| Flow rate         | 1.0 mL/min                                                                                                                                                                                                    |  |  |  |
| Injection volume  | 5 µL                                                                                                                                                                                                          |  |  |  |
| Detection         | UV, 214 nm                                                                                                                                                                                                    |  |  |  |
| Temperature       | 40 °C                                                                                                                                                                                                         |  |  |  |
| Analytes          | <ol> <li>Maleic acid (-)</li> <li>Acebutolol (50 μg/mL)</li> <li>Metoprolol (50)</li> <li>Timolol (100)</li> <li>Oxprenolol (50)</li> <li>7. Labetalol diasteromers (50)</li> <li>Propranolol (20)</li> </ol> |  |  |  |



.....

#### Hydrocortisone in skin ointment

| Acclaim 120 C8 column, 3 μm, 4.6 × 150 mm |                                                                                                                                                                                                    |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mobile phase                              | Acetonitrile:water 49:51                                                                                                                                                                           |  |
| Flow rate                                 | 1.0 mL/min                                                                                                                                                                                         |  |
| Injection volume                          | 1 µL                                                                                                                                                                                               |  |
| Detection                                 | UV, 245nm                                                                                                                                                                                          |  |
| Temperature                               | 30 °C                                                                                                                                                                                              |  |
| Sample                                    | <ul> <li>Disperse 100 mg of ointment in 7.0 mL denatured ethanol</li> <li>Mix in 3.0 mL hexane then 1.0 mL water</li> <li>Centrifuge to separate emulsion</li> <li>Filter ethanol layer</li> </ul> |  |
| Peaks                                     | 1. Hydrocortisone 1.05% (label 1.0%)<br>2. Methyl paraben 0.32%<br>3. Propyl paraben 0.21%                                                                                                         |  |



### Acclaim 300 C18 columns

#### High-resolution reversed-phase separation of proteins and peptides

Thermo Scientific Acclaim 300 C18 series columns feature a densely bonded monolayer of octadecyldimethylsiloxane on a highly pure, spherical silica substrate with a wider, 300 Å pore structure.

Acclaim 300 series columns are designed for small protein (up to 150 kDa) and peptide separations. Acclaim 300 columns are also useful for general-purpose, reversed-phase chromatography of small molecules.

Acclaim 300 C18 columns feature:

- Technology designed for high-resolution peptide and protein separations
- High efficiency 3 µm spherical silica substrate
- The same high performance bonding chemistry as the Acclaim 120 series, but using a silica substrate with larger 300 Å pores and lower surface area
- Minimal secondary interactions for repeatable results day-to-day and column-to-column
- LC-MS compatible

The unique bonding chemistry results in a high-density, highly uniform phase coverage with extensive endcapping. The use of a 3 µm silica particle accelerates the diffusion of the mobile phase into the stationary phase, resulting in fast, high-resolution separations. Compared to 5 µm column packings, a given separation can be achieved in a shorter run time by increasing the flow rate of the mobile phase and running shallower gradients on shorter columns.

#### Budesonide and related substances

| Acclaim 300 C18 column, 3 μm, 150 x 4.6 mm                                        |                                                          |  |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| Mobile phase(A) Acetonitrile:ethanol 15:1(B) 0.1% phosphoric acid isocratic 66% B |                                                          |  |  |
| Flow rate                                                                         | 1.0 mL/min                                               |  |  |
| Injection volume                                                                  | 15 μL                                                    |  |  |
| Detection                                                                         | UV, 240nm                                                |  |  |
| Temperature                                                                       | 30 °C                                                    |  |  |
| Sample                                                                            | Budesonide, 500 $\mu$ g/mL after three days              |  |  |
| Analytes                                                                          | 7, 8. Budesonide epimers, 99%                            |  |  |
| Deference: Hou & Hind                                                             | Ile M. Buren DD. I. Dharm. Biomad. Apoly, 2001 24:271-90 |  |  |

Reference: Hou S, Hindle M, Byron PR; J. Pharm. Biomed. Analy. 2001 24:371-80.





#### Tryptic Peptide Map of bovine serum albumin on Acclaim 300 C18 column

| Acclaim 300 C18 column, 3 μm, 4.6 × 50 mm |                                                                        |  |  |
|-------------------------------------------|------------------------------------------------------------------------|--|--|
| Mobile phase                              | (A) 95/5/0.1 H2O/acetonitrile/TFA<br>(B) 5/95/0.1 H2O/acetonitrile/TFA |  |  |
| Flow rate                                 | 1.0 mL/min                                                             |  |  |
| Injection volume                          | 40 µL                                                                  |  |  |
| Detection                                 | UV, 214 nm                                                             |  |  |
| Gradient                                  | 5% B to 40% B in 35 min                                                |  |  |



Comparison of acid additives for peptide analysis on Acclaim 300 C18 column.....

| Acclaim 300 C18 column, 3 µm, 4.6 × 150 mm |                                                                                             |                                                                                                                |  |  |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Mobile phase                               | (B) Water                                                                                   | <ul><li>(A) 70% acetonitrile v/v</li><li>(B) Water</li><li>(C) Acid stock solution</li></ul>                   |  |  |  |  |  |
| Flow rate                                  | 1.0 mL/min                                                                                  |                                                                                                                |  |  |  |  |  |
| Injection volume                           | 5 µL                                                                                        |                                                                                                                |  |  |  |  |  |
| Detection                                  | UVD 340U; UV, 2                                                                             | 14 nm                                                                                                          |  |  |  |  |  |
| Temperature                                | TCC100 thermos                                                                              | TCC100 thermostat at 30 °C                                                                                     |  |  |  |  |  |
| Acid additive                              | B. Trifluoroacetic                                                                          | <ul><li>A. Phosphoric acid, 0.15%</li><li>B. Trifluoroacetic acid, 0.1%</li><li>C. Formic acid, 0.1%</li></ul> |  |  |  |  |  |
| Sample                                     | Sigma H2016 Pe                                                                              | Sigma H2016 Peptide Mix                                                                                        |  |  |  |  |  |
| Peaks                                      | 1. Gly-Tyr<br>2. Val-Tyr-Val<br>3. Met-Enkephalin<br>4. Angiotensin-II<br>5. Leu-Enkephalin |                                                                                                                |  |  |  |  |  |
|                                            |                                                                                             |                                                                                                                |  |  |  |  |  |
| Gradient                                   | -8                                                                                          | -8 0 16                                                                                                        |  |  |  |  |  |
| A%                                         | 7 7 75                                                                                      |                                                                                                                |  |  |  |  |  |



#### Protein mixture by reversed-phase HPLC on Acclaim 300 C18 column

68

25

0 25

68

25

В%

C%

| Acclaim 300 C18  | Acclaim 300 C18 column, 3 μm, 4.6 × 150 mm                                                               |                                                                 |    |    |  |  |
|------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----|----|--|--|
| Mobile phase     | (A) 5 mM MSA in 95/5 H <sub>2</sub> O/acetonitrile<br>(B) 5 mM MSA in 5/95 H <sub>2</sub> O/acetonitrile |                                                                 |    |    |  |  |
| Injection volume | 25 µL                                                                                                    |                                                                 |    |    |  |  |
| Detection        | UV, 214 n                                                                                                | m                                                               |    |    |  |  |
| Flow rate        | 1.0 mL/m                                                                                                 | in                                                              |    |    |  |  |
| Peaks            | anyhdrase<br>3. Impurit<br>4. Lysozy<br>5. Impurit<br>anhydrase<br>6. Myoglo                             | y in carbonic<br>e<br>y in lysozyme<br>me<br>y in carbonic<br>e |    |    |  |  |
| Credient         | 0                                                                                                        | 0                                                               | 10 | 00 |  |  |

| Gradient | 0   | 3   | 18  | 23  |
|----------|-----|-----|-----|-----|
| A%       | 100 | 100 | 0   | 0   |
| B%       | 0   | 0   | 100 | 100 |



### Acclaim C30 columns

#### Columns for separating structurally related isomers

The Thermo Scientific Acclaim C30 column is designed to provide high shape selectivity for separating hydrophobic structural related isomers and unique selectivity complementary to other reversed-phase columns (e.g., C18).

- High shape selectivity
- Unique selectivity complementary to other reversed-phase columns
- Compatibility with highly aqueous mobile phase
- High-quality: low column bleed, high efficiency and rugged packing

#### Carotenoids in vegetables

| LC system        | UltiMate 3000 RS                            |  |  |  |  |  |
|------------------|---------------------------------------------|--|--|--|--|--|
|                  | (A) Acetonitrile                            |  |  |  |  |  |
| Mobile phase     | (B) Methanol:Ethyl acetate 1:1 (v/v)        |  |  |  |  |  |
|                  | (C) 200 mM acetic acid in water             |  |  |  |  |  |
| Injection volume | 28 μL                                       |  |  |  |  |  |
| Detection        | Diode Array; VIS 450 nm, spectra 260-800 nm |  |  |  |  |  |
| Flow rate        | 1.50 mL/min                                 |  |  |  |  |  |
| Temperature      | 30 °C                                       |  |  |  |  |  |
| 0                | A. Carrot extract in acetone                |  |  |  |  |  |
| Sample           | B. Spinach extract in acetone               |  |  |  |  |  |
|                  | C. Maize extract in acetone                 |  |  |  |  |  |
|                  | 1. Lutein                                   |  |  |  |  |  |
|                  | 2. Zeaxanthin                               |  |  |  |  |  |
|                  | 3. Chlorophyll-b                            |  |  |  |  |  |
| Peaks            | 4. alpha-Cryptoxanthin                      |  |  |  |  |  |
| 1 Ouro           | 5.beta-Cryptoxanthin                        |  |  |  |  |  |
|                  | 6. Chlorophyll-a                            |  |  |  |  |  |
|                  | 7. alpha-Carotene                           |  |  |  |  |  |
|                  | 8. beta-Carotene                            |  |  |  |  |  |
|                  |                                             |  |  |  |  |  |
| Time -           | 5 0 2 15 25                                 |  |  |  |  |  |

| Time | -5   | 0    | 2    | 15   | 25   |
|------|------|------|------|------|------|
| A%   | 85.0 | 85.0 | 85.0 | 65.0 | 65.0 |
| B%   | 14.5 | 14.5 | 14.5 | 34.5 | 34.5 |
| C%   | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  |

#### Glucocorticosteroids

| Acclaim C30 colur | nn, 3 μm, 150 x 3.0 mm                      |
|-------------------|---------------------------------------------|
| LC system         | UltiMate 3000 RS system                     |
| Mobile phase      | Methanol:tetrahydrofuran:water 3:25:72(v/v) |
| Injection volume  | 2 μL                                        |
| Detection         | Diode Array, UV, 240 nm                     |
| Flow rate         | 0.50 mL/min                                 |
| Temperature       | 30 °C                                       |
|                   | A. Carrot extract in acetone                |
| Samples           | B. Spinach extract in acetone               |
|                   | C. Maize extract in acetone                 |
|                   | 1. Prednisone                               |
|                   | 2. Cortisone                                |
|                   | 3. Prednisolone                             |
| Peaks             | 4. Hydrocortisone                           |
| (50 µg/mL)        | 5. Dexamethasone                            |
| ( 10 )            | 6. 6-Methylprednisolone                     |
|                   | 7. Corticosterone                           |
|                   | 8. 11-Deoxyhydrocortisone                   |
|                   |                                             |





Reference: "HarvetsPlus Handbook for Carotenoid Analysis", D.B. Rodriguez- Amaya and M. Kimura, International Food Policy Research Institute, 2004.



Reference: McWhinney B C, Ward G, Hickman P E; *Clin. Chem*, 1996 , 42:979-981.

#### Analysis of cooking oils

| Acclaim C30 column, 5 μm, 150 x 4.6 mm |                                                                                        |  |
|----------------------------------------|----------------------------------------------------------------------------------------|--|
| LC system                              | UltiMate 3000 RS system                                                                |  |
| Mobile phase                           | Acetinitrile (MeCN)/Iso-propanol (IPA)/<br>Ammonium Acetate (0.1 M, pH5.0)<br>(Buffer) |  |
| Injection volume                       | 2 µL                                                                                   |  |
| Detection                              | Corona <i>ultra</i> (Gain = 100 pA; Filter = medium;<br>Neb. temp = 25 °C)             |  |
| Flow rate                              | 1.0 mL/min                                                                             |  |
| Temperature                            | 40 °C                                                                                  |  |
| Sample                                 | Peanut, olive, or wheat germ oil<br>(5 mg/mL in iso-propanol)                          |  |

| Time (min) | MeCN | IPA | Buffer |
|------------|------|-----|--------|
| -15        | 90   | 5   | 5      |
| 0          | 90   | 5   | 5      |
| 0.1        | 90   | 5   | 5      |
| 60         | 0    | 95  | 5      |
| 80         | 0    | 95  | 5      |



#### Profile of egg lecitin

| Acclaim C30 column, 5 μm, 150 x 4.6 mm |                                                                                     |  |
|----------------------------------------|-------------------------------------------------------------------------------------|--|
| LC system                              | UltiMate 3000 RS system                                                             |  |
| Mobile phase                           | Acetinitrile (MeCN)/Iso-propanol (IPA)/<br>Ammonium Acetate (0.1 M, pH5.0) (Buffer) |  |
| Injection volume                       | 2 μL                                                                                |  |
| Detection                              | Corona <i>ultra</i> (Gain = 100 pA; Filter = medium;<br>Neb. Ttemp = 25 °C)         |  |
| Flow rate                              | 1.0 mL/min                                                                          |  |
| Temperature                            | 40 °C                                                                               |  |
| Sample                                 | Peanut, olive, or wheat germ oil<br>(5 mg/mL in iso-propanol)                       |  |
|                                        |                                                                                     |  |

| Time (min) | MeCN | IPA | Buffer |
|------------|------|-----|--------|
| -15        | 70   | 0   | 30     |
| 0          | 70   | 0   | 30     |
| 0.1        | 70   | 0   | 30     |
| 10         | 90   | 0   | 10     |
| 35         | 10   | 80  | 10     |
| 50         | 0    | 95  | 5      |
| 60         | 0    | 95  | 5      |



### Acclaim Polar Advantage (PA) columns

#### Novel polar-embedded reversed-phase columns with unique selectivity

The Thermo Scientific Acclaim PA column has a patented surface chemistry that renders it compatible with solvent-free mobile phases. The ether and sulfonamide linkages are more hydrolytically stable than the amides used in many polar-embedded phases. The synthesis procedure minimizes both residual silanols and amines, thus making the Acclaim PA column suitable for acidic, basic, or neutral analytes.

The Acclaim PA column benefits include:

- Compatibility with solvent-free applications without any compromise to performance for acids and bases
- Novel polar-embedded surface layer
- Ability to work with 0–100% aqueous or 0–100% organic solvent mobile phases
- Resolves hydrophilic compounds
- High selectivity for hydrophobic compounds
- Different selectivity than C18 makes PA useful as a confirmation column
- Wide range of applications in pharmaceutical, environmental, food testing, and product-quality testing
- LC-MS compatible

#### EPA method 604 Phenols separation

| Acclaim RSLC Pola | r Advantage column, 2.2 µm, 50 x 3.0 mm                                                                                                                                                                                                                                                                            |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mobile phase      | (A) 10mM formic acid + 10 mM ammonium formate, pH $3.75 \pm 0.05$ (B) Acetonitrile                                                                                                                                                                                                                                 |  |
| Flow rate         | 1.25 mL/min                                                                                                                                                                                                                                                                                                        |  |
| Injection volume  | 0.5 µL                                                                                                                                                                                                                                                                                                             |  |
| Detection         | UV, 280nm, 10Hz, 0.5 s resp. time                                                                                                                                                                                                                                                                                  |  |
| Temperature       | 30 °C                                                                                                                                                                                                                                                                                                              |  |
| Peaks             | <ol> <li>Phenol</li> <li>2,4-Dinitrophenol</li> <li>4-Nitrophenol</li> <li>2-Chlorophenol</li> <li>2-Nitrophenol</li> <li>2,4-Dimethylphenol</li> <li>4,6-Dinitro-2-methylphenol</li> <li>4-Chloro-3-methylphenol</li> <li>2,4-Dichlorophenol</li> <li>2,4,6-Trichlorophenol</li> <li>Pentachlorophenol</li> </ol> |  |

| Gradient | -1.5 | 0.0 | 0.3 | 2.6 | 3.0 |
|----------|------|-----|-----|-----|-----|
| A%       | 70   | 70  | 70  | 10  | 10  |
| В%       | 30   | 30  | 30  | 90  | 90  |





#### **Resistance to dewetting example**

The surface of a conventional C18 phase is very hydrophobic. When hydrophobic surfaces are in contact with highly aqueous mobile phases, the partial pressure of dissolved gases can expel the mobile phase from the pores of the stationary phase. This process is called dewetting and it adversely affects chromatographic performance. By design, the mildly hydrophilic surface of the Acclaim PA column remains in contact with aqueous-only mobile phases, negating the problem of dewetting.

While the onset of dewetting is somewhat unpredictable, stopping the flow of mobile phase through the column can initiate the process. The accompanying figure shows the effect of repeatedly stopping the flow through a C18 and a PA column. The C18 column dewets in a single cycle, but the PA column remains wetted through many cycles.

#### **Resistance to dewetting**

| Acclaim PA column, 5 μm, 4.6 × 150 mm |                                        |  |  |
|---------------------------------------|----------------------------------------|--|--|
| Mobile phase                          | 2.5 mM methanesulfonic acid, pH 2.6    |  |  |
| Flow rate                             | 1 mL/min                               |  |  |
| Injection volume                      | 5 μL                                   |  |  |
| Detection                             | UV, 254 nm                             |  |  |
| Temperature                           | 30 °C                                  |  |  |
| Peaks                                 | 1. Cytosine<br>2. Uracil<br>3. Thymine |  |  |

Each cycle consists of two steps:

- 1. Equilibrate columns for 20 min before testing for 10 min.
- 2. Stop flow for 30 min before next cycle begins.



#### Separation of five antidepressants on Acclaim PA column

| Acclaim PA column, 5 µm, 4.6 × 150 mm |                                                                                                                                     |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Mobile phase                          | 80/20 v/v MeOH/30 mM phosphate, pH 6.0                                                                                              |  |
| Flow rate                             | 1 mL/min                                                                                                                            |  |
| Injection volume                      | 5 µL                                                                                                                                |  |
| Detection                             | UV, 220 nm                                                                                                                          |  |
| Temperature                           | 30 °C                                                                                                                               |  |
| Peaks                                 | <ol> <li>Protriptyline 50</li> <li>Nortriptyline 25</li> <li>Doxepin 50</li> <li>Imipramine 40</li> <li>Amitriptyline 50</li> </ol> |  |



### Acclaim Polar Advantage II (PA2) columns

#### Complementary selectivity and enhanced hydrolytic stability

Thermo Scientific Acclaim Polar Advantage II (PA2) columns, like the Acclaim PA2 column, is a high-efficiency, silica-based, reversed-phase column with a polar enhanced stationary phase for operation over a wider range of chromatographic conditions than is possible with conventional reversed-phase stationary phases.

Acclaim PA2 column is an amide polar-embedded phase, with all the advantages of conventional polar-embedded phases, but with enhanced hydrolytic stability at both low and high pH (pH 1.5–10). The Acclaim PA2 column provides selectivity that is complementary to conventional C18 columns, and to our Acclaim PA column. This column is fully compatible with 100% aqueous mobile phases and provides symmetrical peaks for both polar and non-polar analytes.

- Ability to separate polar and non-polar compounds
- Exceptional hydrolytic stability (pH 1.5-10)
- High polarity for complementary selectivity to C18 columns
- Compatibility with 0–100% aqueous or 0–100% organic solvent mobile phases
- Good peak shapes for both acidic and basic compounds
- High column efficiency
- Broad range of applications in pharmaceutical, environmental, food testing and product-quality testing

#### **Turmeric separation**

| Acclaim 120 C18 column, 2.2 μm, 100 x 2.1 mm<br>Acclaim PA2 column, 2.2 μm, 100 x 2.1 mm |                                                                                        |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| Mobile phase                                                                             | (A) 15mM H <sub>3</sub> PO <sub>4</sub><br>(B) Methanol                                |  |
| Flow rate                                                                                | 0.41 mL/min                                                                            |  |
| Isocratic                                                                                | C18: 70% B (v/v)<br>PA2: 80% B (v/v)                                                   |  |
| Detection                                                                                | UV, 428 nm                                                                             |  |
| Sample                                                                                   | Turmeric extract                                                                       |  |
| Temperature                                                                              | 30 °C                                                                                  |  |
| Analytes                                                                                 | <ol> <li>Curcumin</li> <li>Demethoxycurcumin</li> <li>Bis-demethoxycurcumin</li> </ol> |  |

Com City Spin 120A 4.6 X 250 mm is particular to a spin to a spin





#### Beta blockers on Acclaim PA2 columns

| Acclaim PA2 column, 5 μm, 4.6 × 150 mm |                                                             |                                                               |  |  |
|----------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Mobile phase                           | MeOH/0.2% NH <sub>4</sub> OH                                | MeOH/0.2% NH <sub>4</sub> OH, pH10, v/v, 60/40                |  |  |
| Flow rate                              | 1.0 mL/min                                                  | 1.0 mL/min                                                    |  |  |
| Injection volume                       | 5 µL                                                        |                                                               |  |  |
| Detection                              | UV, 210 nm                                                  |                                                               |  |  |
| Temperature                            | 30 °C                                                       | 30 °C                                                         |  |  |
| Peaks<br>(40 ppm each)                 | 1. Maleate<br>2. Labetalol<br>3. Metaraminol<br>4. Atenolol | 5. Acebutolol<br>6. Metoprolol<br>7. Timolol<br>8. Oxprenolol |  |  |



.....

#### Catecholamines in urine on Acclaim PA2 columns

| Acclaim PA2 colu     | ımn, 3 μm, 2.1 × 150 mm                                                                                                                                                                                                                                                                                                                                |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mobile phase         | Buffer (11.98 g citric acid,<br>3.53 g NaOAc, 37.2 mg EDTA,<br>10 mL of 0.1 M methanesulfonic acid<br>in 1 L D.I. water)/MeOH v/v 90/10                                                                                                                                                                                                                |  |
| Flow rate            | 0.2 mL/min                                                                                                                                                                                                                                                                                                                                             |  |
| Injection volume     | 2 µL                                                                                                                                                                                                                                                                                                                                                   |  |
| Detection            | DC amperometry [GC electrode, 800 mV]                                                                                                                                                                                                                                                                                                                  |  |
| Temperature          | 30 °C                                                                                                                                                                                                                                                                                                                                                  |  |
| Peaks<br>(1 nM each) | <ol> <li>4-Hydroxy-3-methoxymandelic acid</li> <li>4-Hydroxy-3-methoxyphenylglycol</li> <li>Norepinephrine</li> <li>Epinephrine</li> <li>S,4-digydroxybenzlamine 3,4-digydroxybenzlamine</li> <li>Normetanephrine</li> <li>Metanephrine</li> <li>Dopamine</li> <li>4-Hydroxy-3-methoxyphenylacetic acid</li> <li>5-Hydroxyindoleacetic acid</li> </ol> |  |



#### Separation of water-soluble vitamins on Acclaim PA2 columns

| Acclaim RSLC Polar Advantage PA2 column, 2.2 µm, 150 × 2.1 mm |                                                                                                                                                                                                |                                                                                                        |  |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase                                                  | <ul><li>(A) 25 mM potassium dihydrogen phosphate, pH</li><li>3.8 (adjusted with phosphoric acid)</li><li>(B) 70:30 acetonitrile/25 mM potassium</li><li>dihydrogen phosphate, pH 3.8</li></ul> |                                                                                                        |  |  |
| Flow rate                                                     | 0.4 mL/min                                                                                                                                                                                     | 0.4 mL/min                                                                                             |  |  |
| Injection volume                                              | 2 µL                                                                                                                                                                                           |                                                                                                        |  |  |
| Detection                                                     | UV, 210 nm                                                                                                                                                                                     |                                                                                                        |  |  |
| Temperature                                                   | 25 °C (with passive pre-h                                                                                                                                                                      | 25 °C (with passive pre-heater)                                                                        |  |  |
| Peaks                                                         | <ol> <li>Ascorbic acid</li> <li>Thiamine</li> <li>Pyridoxal</li> <li>Pyridoxin</li> <li>Nicotinamide</li> </ol>                                                                                | <ol> <li>Pantothenic acid</li> <li>Folic acid</li> <li>Cyanocobalamine</li> <li>Riboflavinm</li> </ol> |  |  |
|                                                               |                                                                                                                                                                                                |                                                                                                        |  |  |

| Time | 0 | 5  | 7  | 10 |
|------|---|----|----|----|
| В%   | 0 | 36 | 10 | 0  |



### Acclaim Phenyl-1 column

#### A unique reversed-phase column with high aromatic selectivity

Thermo Scientific Acclaim Phenyl-1 columns are designed to provide unique selectivity distinguished from other reversed-phase HPLC columns, resulting in superior separations for analytes that cannot be resolved well on typical alkyl phases (C18 and C8) or other phenyl-type columns.

- High aromatic selectivity
- High hydrophobic retention
- Unique and complementary selectivity compared to any other phenyl type column
- Compatibility with highly aqueous mobile phase
- High efficiency and rugged packing



Acclaim Phenyl-1 column has a higher pi-pi interaction than other phenyl phases and provides unique selectivity for aromatic compounds while maintaining sufficient hydrophobic interaction and aqueous compatibility for superior chromatographic performance.

Acclaim Phenyl-1 column can be used in a wide range of applications in pharmaceutical, environmental, food testing and product-quality testing. This column is ideally suited for the analysis of aromatic analytes; some examples include glucocorticosteroids, estrogens, fat-soluble vitamins and phospholipids.

#### Separation of fat-soluble vitamins

| Acclaim Phenyl-1 column, 3 μm, 150 x 3.0 mm |                                                                                                                                                                                                                                                                                          |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase                                | Methanol/water v/v 90/10                                                                                                                                                                                                                                                                 |  |  |
| Flow rate                                   | 0.5 mL/min                                                                                                                                                                                                                                                                               |  |  |
| Injection volume                            | 2 μL                                                                                                                                                                                                                                                                                     |  |  |
| Detection                                   | UV, 220nm                                                                                                                                                                                                                                                                                |  |  |
| Temperature                                 | 30 °C                                                                                                                                                                                                                                                                                    |  |  |
| Peaks<br>(100 ppm each)                     | <ol> <li>Retinol acetate (vitamin A acetate)</li> <li>Vitamin D2</li> <li>Vitamin D3</li> <li>delta-Tocopherol</li> <li>gamma-Tocopherol</li> <li>alpha-Tocopherol (vitamin E)</li> <li>Impurity (unknown)</li> <li>Vitamin E acetate</li> <li>Vitamin K2</li> <li>Vitamin K1</li> </ol> |  |  |



#### Separation of glucocorticosteroids

| Acclaim Phenyl-1 column, 3 µm, 3.0 × 250 mm |                                                                                                                                                                                                           |  |  |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Mobile phase                                | Methanol/water v/v 46/54                                                                                                                                                                                  |  |  |  |  |
| Flow rate                                   | 0.5 mL/min                                                                                                                                                                                                |  |  |  |  |
| Injection volume                            | 5 µL                                                                                                                                                                                                      |  |  |  |  |
| Detection                                   | UV, 254 nm                                                                                                                                                                                                |  |  |  |  |
| Temperature                                 | 40 °C                                                                                                                                                                                                     |  |  |  |  |
| Peaks<br>(50 ppm each)                      | <ol> <li>Prednisone</li> <li>Cortisone</li> <li>Prednisolone</li> <li>Hydrocortisone</li> <li>Dexamethasone</li> <li>6-Methylprednisolone</li> <li>Corticosterone</li> <li>Deoxyhydrocortisone</li> </ol> |  |  |  |  |



#### Analysis of soybean and egg lecithin

| Acclaim Phenyl-1 column, 3 μm, 3.0 × 150 mm                                             |                                                                                          |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Mobile phase Acetonitrile/2-propanol/ammonium<br>acetate (100 mM, pH5.0) v/v/v 45/45/10 |                                                                                          |  |  |
| Flow rate                                                                               | 0.45 mL/min                                                                              |  |  |
| Injection volume                                                                        | 2 µL                                                                                     |  |  |
| Detection                                                                               | Corona ultra (Gain = 100 pA;<br>Filter = low; Nebulizer temp. = 25 °C)                   |  |  |
| Temperature                                                                             | 25 °C                                                                                    |  |  |
| Samples                                                                                 | 1. Soybean Lecithin (1 mg/mL in 2-propanol)<br>2. Egg lecithin (2.5 mg/mL in 2-propanol) |  |  |

.....



#### Phospholipids in soybean lecithin

| Acclaim Phenyl-1 column, 3 μm, 3.0 × 150 mm |                                                                             |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Mobile phase                                | Acetonitrile/2-propanol/ammonium<br>acetate (100 mM, pH 5.0) v/v/v 70/10/20 |  |  |
| Flow rate                                   | 0.45 mL/min                                                                 |  |  |
| Injection volume                            | 5 µL                                                                        |  |  |
| Detection                                   | Corona ultra (Gain = 100 pA; Filter = low;<br>Nebulizer temp. = 25 °C)      |  |  |
| Temperature                                 | 25 °C                                                                       |  |  |
| Sample                                      | Soybean lecithin (1 mg/mL in 2-propanol)                                    |  |  |



### Acclaim HILIC-10 column

#### Designed with unique selectivity for hydrophilic molecules

The Thermo Scientific Acclaim HILIC-10 column is designed for separating highly hydrophilic molecules by hydrophilic interaction liquid chromatography (HILIC). This column is based on high-purity spherical porous silica covalently modified with a proprietary hydrophilic layer.

HILIC is a complementary technique to reversed-phase liquid chromatography (RPLC) with several benefits. Polar analytes that cannot be retained using RP columns can be retained and separated using the Acclaim HILIC-10 column. The advantage of the HILIC phases is that they allow the use of 5–20% aqueous mobile phase, while maintaining affinity for polar analytes.

The Acclaim HILIC-10 column is ideally suited for analysis of polar analytes as demonstrated its use in a wide variety of applications including pharmaceuticals, metabolites, fat-soluble vitamins, oils, industrial applications, etc.

- Retains highly polar molecules that are not retained by reversed-phase chromatography
- Unique selectivity, complementary to reversed-phase columns
- Hydrolytically stable
- Rugged column packing
- Broad application range

#### Glycerides

| Acclaim HILIC-10 column, 3 μm, 150 x 3.0 mm |                                                                                                                                        |                                                    |  |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| Mobile phase                                | (A) Heptane<br>(B) 2-Propanol/acetic                                                                                                   | (A) Heptane<br>(B) 2-Propanol/acetic acid 99.5:0.5 |  |  |
| Flow rate                                   | 0.50 mL/min                                                                                                                            |                                                    |  |  |
| Injection volume                            | 4 μL                                                                                                                                   |                                                    |  |  |
| Detection                                   | Corona ultra, nebulizer 15 °C                                                                                                          |                                                    |  |  |
| Temperature                                 | 25 °C                                                                                                                                  |                                                    |  |  |
| Analytes                                    | 1. Tristearin5. Distearin isomer 22. Trilaurin6. Dilaurin isomer 23. Distearin isomer 17. Monostearin4. Dilaurin isomer 18. Monolaurin |                                                    |  |  |

#### Separation of hydrophilic pharmaceuticals

| Acclaim HILIC-10 column, 3 μm, 4.6 × 150 mm                                                                                      |                                                                                                                                               |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase $\begin{array}{l} 90/10 \text{ v/v CH}_3\text{CN}/10 \text{ mM (total)} \\ \text{NH}_4\text{OAc, pH 5} \end{array}$ |                                                                                                                                               |  |  |
| Flow rate                                                                                                                        | 1 mL/min                                                                                                                                      |  |  |
| Injection volume                                                                                                                 | on volume 2 μL                                                                                                                                |  |  |
| Detection                                                                                                                        | UV, 230 nm                                                                                                                                    |  |  |
| Temperature                                                                                                                      | 30 °C                                                                                                                                         |  |  |
| Analytes                                                                                                                         | <ol> <li>Acetaminophen 0.1 mg/mL</li> <li>Salicylic acid 0.1</li> <li>Aspirin 0.2</li> <li>Penicillin G 0.1</li> <li>Metformin 0.1</li> </ol> |  |  |









#### Separation of acrylic acid and oligomers

| Acclaim HILIC-10 column, 3 μm, 4.6 × 150 mm                                                                                      |                                               |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| Mobile phase $\begin{array}{c} 90/10 \text{ v/v CH}_3\text{CN}/10 \text{ mM (total)} \\ \text{NH}_4\text{OAc, pH 5} \end{array}$ |                                               |  |  |
| Flow rate                                                                                                                        | 1 mL/min                                      |  |  |
| Injection volume                                                                                                                 | 2 µL                                          |  |  |
| Detection                                                                                                                        | Corona CAD ultra                              |  |  |
| Temperature                                                                                                                      | 30 °C                                         |  |  |
| Analytes                                                                                                                         | 1. Cyanuric acid 0.2 mg/mL<br>2. Melamine 0.2 |  |  |



Separation of Good's buffer salts

| Acclaim HILIC-10 column, 3 µm, 4.6 × 150 mm                                                                                          |                                                     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| Mobile phase $\begin{array}{l} 85/15 \text{ v/v CH}_{3}\text{CN}/10 \text{ mM (total)} \\ \text{NH}_{4}\text{OAc, pH 5} \end{array}$ |                                                     |  |  |
| Flow rate                                                                                                                            | 1 mL/min                                            |  |  |
| Injection volume                                                                                                                     | 10 µL                                               |  |  |
| Detection                                                                                                                            | Corona CAD ultra                                    |  |  |
| Temperature                                                                                                                          | 30 °C                                               |  |  |
| Analytes<br>(0.1 mg/mL in<br>mobile phase)                                                                                           | 1. TAPS<br>2. CHES<br>3. MOPS<br>4. TES<br>5. HEPES |  |  |



Separation of mono-, di-, and triglycerides

| Mobile phase     | (A) Heptane<br>(B) 2-Propanol-acetic acid 99.5:0.5                                                                                                                                                       |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Flow rate        | 0.50 mL/min                                                                                                                                                                                              |  |  |  |  |
| Injection volume | 4 µL                                                                                                                                                                                                     |  |  |  |  |
| Detection        | Corona <i>ultra</i> , nebulizer 15 °C                                                                                                                                                                    |  |  |  |  |
| Temperature      | 25 °C                                                                                                                                                                                                    |  |  |  |  |
| Analytes         | <ol> <li>Tristearin</li> <li>Trilaurin</li> <li>Distearin isomer 1</li> <li>Dilaurin isomer 1</li> <li>Distearin isomer 2</li> <li>Dilaurin isomer 2</li> <li>Monostearin</li> <li>Monolaurin</li> </ol> |  |  |  |  |

| Time | -6.0 | 0.0 | 0.5 | 4.0 | 10.0 |
|------|------|-----|-----|-----|------|
| A%   | 99   | 99  | 96  | 87  | 87   |
| В%   | 1    | 1   | 4   | 13  | 13   |



### Acclaim size exclusion chromatography (SEC)

#### High performance SEC columns for analysis of water soluble polymers

Thermo Scientific Acclaim SEC-300 and SEC-1000 columns are a family of resin based, high-performance size exclusion chromatography columns specifically designed for the separation of water soluble polymers and oligomers.

- Proprietary mono-dispersed multi-pore hydrophilic resin: no inflection points in calibration curve
- SEC-300 columns calibrated from 100 to 50,000 Daltons
- SEC-1000 columns calibrated from 1,000 to 1,000,000 Daltons
- Availability of small particle sizes packed in 300 x 4.6 mm dimension allows for high-resolution analysis at reduced solvent consumption
- Stable surface bonding with low column bleed and compatibility with UV, RI, MS, ELSD and Thermo Scientific<sup>™</sup> Dionex<sup>™</sup> Corona<sup>™</sup> Charged Aerosol Detectors

| Acclaim SEC-300 column, 5 μm, 300 x 4.6 mm<br>Acclaim SEC-1000 column, 7 μm, 300 x 4.6 mm |                                                                                                                     | 100,000,000 - 10,000,000 -                    | 1    |      |           |      | SEC-10 |      |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|------|-----------|------|--------|------|
| Mobile phase                                                                              | 10 mM sodium perchlorate                                                                                            | <b>((</b> ) ,,,,,,,,                          |      | N N  |           |      | SEC-30 | 10   |
| Flow rate                                                                                 | 0.35 mL/min                                                                                                         | (a) 1,000,000 -<br><u>H6</u><br>(a) 100,000 - | 1    | No.  |           |      |        |      |
| Injection volume                                                                          | 50 µL                                                                                                               |                                               |      |      |           |      |        |      |
| Detection                                                                                 | RI                                                                                                                  | 900,00 - 000,00 -                             |      | A.   | ×,        |      |        |      |
| Temperature                                                                               | 25 °C                                                                                                               | ≥<br>1000 -                                   |      |      | N.        | X    |        |      |
|                                                                                           | (0.03% - 0.1% in mobile phase) dextran<br>(MW 5,000,000-40,000,000),<br>PEO (MW 895,000, 580,000, 272,000, 185,000, | 100 -                                         |      |      | ×.        | N. N |        |      |
| Analytes                                                                                  | 80,000, 43,000, and 20,000),<br>PEG (MW 8,300, 3,000, 1,500, 600, 400 and 200),                                     | 10                                            | 2.00 | 2.50 | 3.00      | 3.50 | 4.00   | 4.50 |
|                                                                                           | diethylene glycol (MW 106 and ethylene glycol<br>MW 62)                                                             |                                               |      |      | ion volun |      |        |      |

#### Separation of polyethylene glycols on Acclaim SEC-300 columns vs. Acclaim SEC-1000 columns

| Acclaim SEC-300 column, Acclaim SEC-1000 column, 4.6 x 300 mm |                                                                                                                          |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase                                                  | 10 mM sodium perchlorate                                                                                                 |  |  |
| Flow rate                                                     | 0.35 mL/min                                                                                                              |  |  |
| Injection volume                                              | 5 μL                                                                                                                     |  |  |
| Temperature                                                   | 30 °C                                                                                                                    |  |  |
| Detection                                                     | RI                                                                                                                       |  |  |
| Sample                                                        | (5 mg/mL in mobile phase)<br>1. PEG MW 35,000<br>2. PEG MW 12,000<br>3. PEG MW 3,400<br>4. PEG MW 2,000<br>5. PEG MW 300 |  |  |





Particle size 5 µm, 7 µm

#### Polyacrylic acid using SEC with charged-aerosol detection

| Mobile phase     | (A) Acetonitrile<br>(B) Water                                                   |      | - F   |         |                    | 0.450<br>Area [pA*min]                           |
|------------------|---------------------------------------------------------------------------------|------|-------|---------|--------------------|--------------------------------------------------|
| Flow rate        | 0.35 mL/min                                                                     |      | -     |         |                    | 0.200-                                           |
| Injection volume | 35 µL                                                                           | ٨d   |       | Λ       | 400µg/L            |                                                  |
| Detection        | Corona III; evaporator 55 °C, Engine 40 °C, 2 Hz, filter 5, power function 1.20 |      | -<br> | Λ       | 200µg/L<br>100µg/L | 0.00c0 Concentration [µg/L]<br>0 125 250 375 500 |
| Temperature      | 30 °C                                                                           |      | -     | ∧       | 50µg/L             |                                                  |
| Analyte          | PAA standards in water                                                          | -0.0 |       | ^       | 25µg/L             |                                                  |
|                  |                                                                                 |      | 0     | 5 Minut | ies 10 15          |                                                  |

#### Separation of polyacrylic acid on Acclaim SEC-300 columns vs Acclaim SEC-1000 columns

| Acclaim SEC-300 column, Acclaim SEC-1000 column, 4.6 x 300 mm |                                              |  |  |
|---------------------------------------------------------------|----------------------------------------------|--|--|
| Mobile phase                                                  | 10 mM sodium perchlorate                     |  |  |
| Flow rate                                                     | 0.35 mL/min                                  |  |  |
| Injection volume                                              | 5 µL                                         |  |  |
| Temperature                                                   | 30 °C                                        |  |  |
| Detection                                                     | RI                                           |  |  |
| Sample                                                        | Dextran, MW 10,000 (5 mg/mL in mobile phase) |  |  |



#### Maltodextrin separation using the Acclaim SEC-1000 columns

| Acclaim SEC-1000 column, 4.6 x 300 mm |                                       |  |
|---------------------------------------|---------------------------------------|--|
| Mobile phase                          | 100 mM ammonium acetate pH 5.0        |  |
| Flow rate                             | 0.35 mL/min                           |  |
| Injection volume                      | 5 µL                                  |  |
| Temperature                           | 25 °C                                 |  |
| Detection                             | Corona ultra Charged Aerosol Detector |  |
| Sample                                | MALTRINs, 5 mg/mL each                |  |





# Acclaim Mixed-Mode columns

### Acclaim Mixed-Mode HPLC columns

#### Mixed-Mode chromatography

Mixed-Mode chromatography provides multiple functionalities on a single chromatographic support. For example, combining both reversed-phase and ion-exchange retention mechanisms or reversed-phase and HILIC or even three mechanisms (Trinity). One major advantage of this approach is that column selectivity can easily be modified for optimal selectivity by adjusting mobile phase ionic strength, pH and/or organic solvent concentration. As a result, not only is the selectivity of a Mixed-Mode column complementary to that of reversed-phase columns, but it also allows for the development of multiple complementary selectivities on the same column under different appropriate conditions. Mixed-Mode chromatography is well-suited to retaining ionic analytes, whether hydrophobic (e.g. Naproxen) or hydrophilic (e.g. Na<sup>+</sup> and Cl<sup>-</sup> ions) and requires no ion-pairing agents in the method, significantly improving the MS compatibility. Most importantly, Mixed-Mode chromatography column chemistry can be customized to a desired selectivity during stationary phase design.<sup>1,2</sup>

- Excellent performance: selectivity, resolution and retention
- Good for separations of active pharmaceutical ingredients (APIs), mixtures, formulations, ions
- Good when retention requirements are contradictory for a single-mode column
- Offers flexibility in method development

#### **Bi-modal Mixed-Mode phases**

The Acclaim family contains three bi-modal Mixed-Mode columns and two tri-modal columns. As shown here, bi-modal columns have both a hydrophobic arm – providing reversed-phase retention, and an ion-exchange or diol group at the tip – providing ion-exchange or HILIC retention.



#### **Tri-modal Mixed-Mode phases**

#### Nanopolymer Silica Hybrid technology: Tri-modal Mixed-Mode phases

Acclaim Trinity P1 and P2 columns are based on Thermo Scientific<sup>™</sup> Nanopolymer Silica Hybrid (NSH<sup>™</sup>) technology. These are high-purity porous spherical silica particles coated with charged nanopolymer particles. The inner pores have a bimodal functionality and the outer nanopolymers have a differing ion-exchange functionality. The spatial separation of the two ion-exchange regions allows both retention mechanisms to function simultaneously and be controlled independently.



#### Acclaim Mixed-Mode HPLC columns

| Columns                                                                                                                                                                                                       | Description                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Reversed-phase, anion-exchange, and cation exchange functionalities</li> <li>For superior resolution of active phamaceutical ingredients (API) and counter ions, as mixtures</li> </ul>              |                                                                                                                                                                    |
| <ul> <li>Acclaim Trinity P2</li> <li>HILIC, anion-exchange, and cation exchange functionalities</li> <li>For complex mixtures including separation pharmaceutical counterion; mono- and and anions</li> </ul> |                                                                                                                                                                    |
| Acclaim Mixed-Mode WAX-1                                                                                                                                                                                      | <ul><li>Reversed-phase and anion-exchange combined functionality</li><li>For separating anionic molecules with powerful adjustable selectivity control</li></ul>   |
| Acclaim Mixed-Mode WCX-1                                                                                                                                                                                      | <ul><li>Reversed-phase and cation-exchange combined functionality</li><li>For separating cationic molecules with powerful adjustable selectivity control</li></ul> |
| Acclaim Mixed-Mode HILIC-1                                                                                                                                                                                    | Combined capability to operate in either reversed-phase or HILIC mode                                                                                              |

#### Acclaim Mixed-Mode HPLC column specifications

|                       | Acclaim<br>Trinity P1                                                                       | Acclaim<br>Trinity P2                                                                      | Acclaim<br>Mixed-Mode<br>WAX-1                                   | Acclaim<br>Mixed-Mode<br>WCX-1                                    | Acclaim<br>Mixed-Mode<br>HILIC-1               |  |
|-----------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|--|
| Functionality         | <ul><li>Reversed-phase</li><li>Weak anion exchange</li><li>Strong cation exchange</li></ul> | <ul><li>HILIC</li><li>Strong anion<br/>exchange</li><li>Weak cation<br/>exchange</li></ul> | <ul><li>Reversed-phase</li><li>Weak anion<br/>exchange</li></ul> | <ul><li>Reversed-phase</li><li>Weak cation<br/>exchange</li></ul> | <ul><li>Reversed-phase</li><li>HILIC</li></ul> |  |
| USP type              | _                                                                                           | _                                                                                          | L78                                                              | L85                                                               | _                                              |  |
| Starting material     | Ultrapure silica                                                                            |                                                                                            |                                                                  |                                                                   |                                                |  |
| Particle shape        | Spherical                                                                                   |                                                                                            |                                                                  |                                                                   |                                                |  |
| Particle sizes        | 3 µm                                                                                        | 3 µm                                                                                       | 3 μm<br>5 μm                                                     | 3 μm<br>5 μm                                                      | 3 μm<br>5 μm                                   |  |
| Average pore diameter | 300 Å                                                                                       | 300 Å                                                                                      | 120 Å                                                            | 120 Å                                                             | 120 Å                                          |  |
| Surface area          | 100 m²/g                                                                                    | 100 m²/g                                                                                   | 300 m²/g                                                         | 300 m²/g                                                          | 300 m²/g                                       |  |
| pH range              | 2.5–7.5                                                                                     | 2.5–7.5                                                                                    | 2.5–7.5                                                          | 2.5–7.5                                                           | 2.5–7.5                                        |  |

### Acclaim Mixed-Mode WAX-1 columns

### Designed for separating anionic molecules with powerful adjustable selectivity control

The Thermo Scientific Acclaim Mixed-Mode WAX-1 column is a novel, highefficiency silica HPLC column that combines hydrophobic and weak anion exchange characteristics. Its unique chemistry results in a multimode separation mechanism that includes reversed-phase, anion exchange, and HILIC interactions. Selectivity can be adjusted by changing ionic strength, pH or organic solvent content.

- Adjustable selectivity
- Selectivity orthogonal to reversed-phase (RP) columns
- Ideal selectivity for anionic molecules
- Excellent column efficiency and peak asymmetry
- Multimode retention mechanisms: reversed-phase, weak anion exchange, and HILIC modes

#### Pain relief medicine

#### Acclaim Mixed-Mode WAX-1 column, 5 µm, 150 x 4.6 mm

| Mobile phase     | 40/60 v/v Acetonitrile/buffer<br>(6.8 g potassium monophosphate and<br>0.5 g pyrophosphate in 1000 g D.I. $H_2O$ ,<br>pH is adjusted to 6.0 with NaOH) |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow rate        | 1 mL/min                                                                                                                                               |
| Injection volume | 1 µL                                                                                                                                                   |
| Detection        | UV, 220 nm                                                                                                                                             |
| Temperature      | 30 °C                                                                                                                                                  |
| Analytes         | <ol> <li>Caffeine</li> <li>Acetaminophen</li> <li>Salicylamide</li> <li>Acetyl salicylic acid (Aspirin)</li> <li>Salicylic acid</li> </ol>             |

#### Analysis of soft drinks

| Acclaim Mixed-M  | Acclaim Mixed-Mode WAX-1 column, 5 μm, 150 x 4.6 mm                                                                                                                                                       |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Mobile phase     | (A) 55/45 v/v Acetonitrile/<br>0.2 M phosphate buffer, pH 6.0<br>(B) 57/43 v/v Acetonitrile/<br>0.12 M phosphate buffer, pH 2.9                                                                           |  |  |  |  |
| Temperature      | 30 °C                                                                                                                                                                                                     |  |  |  |  |
| Flow rate        | 1 mL/min                                                                                                                                                                                                  |  |  |  |  |
| Injection volume | 2.5 μL                                                                                                                                                                                                    |  |  |  |  |
| Detection        | UV, 210 nm                                                                                                                                                                                                |  |  |  |  |
| Peaks            | <ol> <li>Caffeine 100 μg/ml</li> <li>Aspartame 100</li> <li>Acesulfame, potassium 100</li> <li>Saccharin 100</li> <li>Sorbate, poassium 100</li> <li>Benzoic acid 100</li> <li>Citrin acid 300</li> </ol> |  |  |  |  |



















1 Caffeine

2. Aspartame 3. Acesulfame, potassium

m 4. Saccharin

rin 5. Sorbate, potassium

m 6. Benzoic acid

7. Citric acid

### Acclaim Mixed-Mode WCX-1 columns

### Designed for separating cationic molecules with adjustable selectivity control

Thermo Scientific Acclaim Mixed-Mode WCX-1 is a novel, high-efficiency, silica-based column, with a proprietary ligand with both hydrophobic and weak cation exchange properties. Selectivity of ionizable and neutral compounds can be controlled independently or simultaneously by tuning mobile phase ionic strength, pH or organic modifier. This column therefore can separate using multiple separation modes: reversed-phase, cation exchange, and HILIC and is recommended for a variety of industrial applications, including pharmaceutical, chemical, consumer products, foods and beverages.

- Adjustable selectivity
- Ideal selectivity for separating basic molecules
- Selectivity complementary to C18 RP columns
- Multimode separation mechanism: reversed-phase, weak cation exchange, anion-exclusion and HILIC

#### **Pharmaceutical counterions**

| Acclaim Mixed-Mode WCX-1 column, 5 µm, 150 x 4.6 mm |                                                                                                                               |                                                                              |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| Mobile phase                                        | 40/60 v/v CH <sub>3</sub> CN/NH4OAc, p                                                                                        | oH 5.2 (20 mM total)                                                         |  |  |
| Flow rate                                           | 1 mL/min                                                                                                                      |                                                                              |  |  |
| Injection volume                                    | 5 µL                                                                                                                          |                                                                              |  |  |
| Detection                                           | UV, 225 nm                                                                                                                    |                                                                              |  |  |
| Temperature                                         | 30 °C                                                                                                                         |                                                                              |  |  |
| Analytes                                            | <ol> <li>Maleate 50 μg/mL</li> <li>Ketoprofen 30 μg/mL</li> <li>Naproxen 30 μg/mL</li> <li>Hydrocortisone 60 μg/mL</li> </ol> | 5. Dexamethasone 60 μg/mL<br>6. Oxprenolol 300 μg/mL<br>7. Timolol 250 μg/mL |  |  |



#### Separation of catecholamines

| Acclaim Mixed-Mode WCX-1 column, 5 μm, 150 x 4.6 mm |                                                                        |  |  |
|-----------------------------------------------------|------------------------------------------------------------------------|--|--|
| Mobile phase                                        | 2/98 v/v CH2CN/sodium phosphate, pH 6.2<br>(10 mM total concentration) |  |  |
| Temperature                                         | 30 °C                                                                  |  |  |
| Flow rate                                           | 1 mL/min                                                               |  |  |
| Injection volume                                    | 5 μL                                                                   |  |  |
| Detection                                           | UV, 215 nm                                                             |  |  |
| Peaks                                               | (0.25 nM each)<br>1. NE<br>2. E<br>3. DHBA<br>4. DA                    |  |  |




# Acclaim Mixed-Mode HILIC-1

### Uniquely designed for both reversed-phase and HILIC operations

The Thermo Scientific Acclaim Mixed-Mode HILIC-1 column features a unique, high-efficiency, silica-based HPLC Mixed-Mode stationary phase that combines both reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) properties. This combination allows both hydrophobic and hydrophilic interactions to be utilized to optimize separations.

The functional group is of a hydrophobic alkyl chain with a diol group at the terminus. This unique combination results in the adjustable selectivity, making Acclaim Mixed-Mode HILIC-1 column separate mixtures that would be impossible for a C18 column. This column is suitable for a broad range of applications, including non-ionic ethoxylated surfactants, drug metabolites, lipids, polyethylene glycols (PEGs), ethoxylated surfactants, and more.

- Can operate in both RP and HILIC modes
- Retains highly polar molecules
- Unique selectivity complementary to RP columns
- Broader application range compared with conventional diol-based columns
- High-efficiency column for high-resolution separations

### Cytosine and naphthalene

| Acclaim Mixed-Mode HILIC-1 column, 5 µm, 150 x 4.6 mm |                                                                                |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Mobile phase                                          | CH3CN/0.1 M NH₄OAc, pH 5.2<br>v/v 52/48 for RP mode<br>v/v 92/8 for HILIC mode |  |  |  |
| Flow rate                                             | 1 mL/min                                                                       |  |  |  |
| Injection volume                                      | 10 µL                                                                          |  |  |  |
| Detection                                             | UV, 254 nm                                                                     |  |  |  |
| Temperature                                           | 30 °C                                                                          |  |  |  |
| Analytes                                              | 1. Cytosine (100 ppm)<br>2. Naphthalene (100 ppm)                              |  |  |  |



This surfactant separation below shows two modes of separation: on top, in the reversed-phase mode, the ethoxylated surfactant elutes as one peak, for easy total content measurements. The same column, when eluted with greater organic solvent concentration in the mobile phase (the HILIC mode), separates all the ethoxylated components individually which can be used to determine the degree of ethoxylation of the surfactant.

### Separation dependency of organic solvent

| Acclaim Mixed-Mode HILIC-1 column, 5 μm, 150 x 4.6 mm |                                                                 |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| Mobile phase                                          | (A) CH <sub>3</sub> CN<br>(B) 0.1 M NH <sub>4</sub> OAc, pH 5.2 |  |  |  |
| Temperature                                           | 30 °C                                                           |  |  |  |
| Flow rate                                             | 1 mL/min                                                        |  |  |  |
| Injection volume                                      | 10 µL                                                           |  |  |  |
| Detection                                             | UV, 225 nm                                                      |  |  |  |
| Sample                                                | IGEPAL CA-630 (0.1%)                                            |  |  |  |

 $G_{H_{17}} \longrightarrow (OCH_2CH_2)_nOH$ IGEPAL CA-630



| pH range      |            |          |
|---------------|------------|----------|
|               |            |          |
| 0             | 2.5 to 7.5 | 14       |
| Hydrophobicit | ty         |          |
| Low           |            | <br>High |
| Pore size     |            |          |
| 0             | 120Å       | 300      |
|               |            |          |



# Acclaim Trinity P1 columns

### Mixed-Mode column technology combining reversed-phase, anion exchange and cation exchange functionality on a single support

The Thermo Scientific Acclaim Trinity P1 HPLC column is designed with nanopolymer silica hybrid (NSH) technology, which results in a multimode surface chemistry ideal for the simultaneous separation of drugs and their counterions. The surface chemistry concurrently provides reversed-phase, cation exchange, and anion exchange functionalities. The result is maximum flexibility in method development. Separations can be optimized easily by adjusting the chromatographic parameters (mobile phase pH, ionic strength, and organic strength).

- Ideal selectivity for simultaneous separation of API and counterion
- Adjustable selectivity by mobile phase ionic strength, electrolyte type, pH, and organic solvent
- Low bleed; compatible with MS, CAD and ELSD
- Retention of hydrophilic ionic and ionizable analytes without ion-pairing reagents
- Greater flexibility in method development: each retention mechanisms can be controlled independently

The Acclaim Trinity P1 column is able to separate both pharmaceutically related cations and anions on one column. The selectivity is ideal and peaks are symmetrical. The column is designed such that cations elute before anions. No other columns can do this separation, and in fact, this separation is part of the production qualification test.

### Simultaneous separation of pharmaceutical counterions

| Acclaim Trinity P1 | column, 3 µm, 100 x                                                                          | 3.0 mm                                                               |  |  |
|--------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| Mobile phase       | 60/40 v/v CH <sub>3</sub> CN/2                                                               | 0 mM (total) NH₄OAc, pH 5                                            |  |  |
| Flow rate          | 0.5 mL/min                                                                                   |                                                                      |  |  |
| Injection volume   | 2 µL                                                                                         |                                                                      |  |  |
| Detection          | Corona ultra (Gain = 100 pA;<br>Filter = med; Neb temp = 30 °C)                              |                                                                      |  |  |
| Temperature        | 30 °C                                                                                        | 30 °C                                                                |  |  |
| Analytes           | (50 to 100ppm)<br>1. Choline<br>2. Tromethamine<br>3. Sodium<br>4. Potassium<br>5. Meglumine | 6. Mesylate<br>7. Nitrate<br>8. Chloride<br>9. Bromide<br>10. lodide |  |  |





Simultaneous separation of pharmaceutical counterions (gradient method)

| Acclaim Trinity  | P1 colu                    | mn, 3 µm, 50                                                                             | ) x 3.0 mi | m                               |          |    |
|------------------|----------------------------|------------------------------------------------------------------------------------------|------------|---------------------------------|----------|----|
| Mobile phase     | (B                         | (A) CH2 <sub>2</sub> N<br>(B) DI H <sub>2</sub> O<br>(C) 0.2 M NH <sub>4</sub> OAc, PH 4 |            |                                 |          |    |
| Temperature      | 30                         | ) °C                                                                                     |            |                                 |          |    |
| Flow rate        | 0.                         | 5 mL/min                                                                                 |            |                                 |          |    |
| Injection volume | 2                          | μL                                                                                       |            |                                 |          |    |
| Detection        |                            | Corona <i>ultra</i> (Gain = 100 pA; Filter = med;<br>Neb temp = 30 °C)                   |            |                                 |          |    |
| Peaks            | 3.<br>4.<br>5.<br>6.<br>7. | . ,                                                                                      |            | 11.<br>12.<br>13.<br>14.<br>15. | Tartrate | 9  |
| Gradient         | -10                        | 0                                                                                        | 2          |                                 | 7        | 15 |
| A%               | 60                         | 60                                                                                       | 60         |                                 | 10       | 10 |
| В%               | 35                         | 35                                                                                       | 35         |                                 | 0        | 0  |

5

C%

5

5

90



Liquid chromatography with tandem mass spektrometry (LC-MS-MS) analysis of ethanol amines (SCX mode)

90

| Acclaim Trinity P1            | column, 3 µm, 100 x 2.1 mm                              |  |  |  |  |
|-------------------------------|---------------------------------------------------------|--|--|--|--|
| Chromatography of             | Chromatography conditions                               |  |  |  |  |
| System                        | Dionex RSLC LC LCi system                               |  |  |  |  |
| Temperature                   | 20 °C                                                   |  |  |  |  |
| Mobile phase                  | 90% CH <sub>3</sub> CN, 10% NH <sub>4</sub> OOCH buffer |  |  |  |  |
| Flow rate                     | 600 µL/min                                              |  |  |  |  |
| Injection volume              | 20 µL                                                   |  |  |  |  |
| Mass spectrometric conditions |                                                         |  |  |  |  |
| System                        | LC-MS-MS QTRAP                                          |  |  |  |  |
| Interface                     | TurboSpray with Electrospray ionization                 |  |  |  |  |
| Curtain gas                   | 15                                                      |  |  |  |  |
| Collision gas                 | Medium                                                  |  |  |  |  |
| IonSpray voltage              | 4500 V                                                  |  |  |  |  |
| Temperature                   | 700 °C                                                  |  |  |  |  |
| lon source gas 1              | 50                                                      |  |  |  |  |
| lon source gas 2              | 20                                                      |  |  |  |  |
| Detection mode                | Multiple reaction monitoring (MRM)                      |  |  |  |  |

| Analyte | Q1MS | Q3MS | DP | CE | СХР |
|---------|------|------|----|----|-----|
| EA      | 62   | 44   | 46 | 15 | 6   |
| DEA     | 106  | 88   | 66 | 19 | 6   |
| DEA-IS  | 114  | 78   | 53 | 24 | 6   |
| MDEA    | 120  | 102  | 46 | 19 | 8   |
| EDEA    | 134  | 116  | 51 | 21 | 8   |
| TEA     | 150  | 132  | 61 | 19 | 0   |



.....

### Acclaim Trinity P2 column

### Mixed-Mode column technology; hydrophilic interaction combining HILIC, anion exchange and cation exchange functionalities

The Thermo Scientific Acclaim Trinity P2 is a unique, high-efficiency, silica-based column specifically designed for separation of pharmaceutical counterions, including monovalent and divalent cations or anions. This column is based on nanopolymer silica hybrid (NSH) technology, which consists of high-purity porous spherical silica particles coated with charged nanopolymer particles. The innerpore area of the silica bead is modified with a covalently bonded organic layer that provides cation-exchange retention, while the outer surface is modified with anion-exchange nano-polymer beads.

The Acclaim Trinity P2 column is aimed to complement Acclaim Trinity P1 columns to provide a total solution for pharmaceutical counter ion analysis by HPLC.

- Ideal for separating pharmaceutical counterions, including monovalent and divalent cations or anions
- Selectivity complementary to the Acclaim Trinity P1 column
- Low column bleed, compatible with CAD and MS
- Hydrolytically stable
- High-efficiency

#### Pharmaceutical-related anions and cations

| Acclaim Trinity P2 | column, 3 µm, 100                                                                                                   | x 3.0 mm                                                                                                                                 |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Mobile phase       | D.I. water and 100                                                                                                  | mM NH <sub>4</sub> OFm, pH 3.65 gradient                                                                                                 |  |  |  |
| Flow rate          | 0.60 mL/min                                                                                                         |                                                                                                                                          |  |  |  |
| Injection volume   | 2 µL                                                                                                                |                                                                                                                                          |  |  |  |
| Detection          | Corona Veo Charg                                                                                                    | Corona Veo Charged Aerosol                                                                                                               |  |  |  |
| Temperature        | 30 °C                                                                                                               | 30 °C                                                                                                                                    |  |  |  |
| Sample             | 0.02 – 0.10 mg/mL                                                                                                   | each in D.I.                                                                                                                             |  |  |  |
| Analytes           | <ol> <li>Phosphate</li> <li>Sodium</li> <li>Potassium</li> <li>Chloride</li> <li>Malate</li> <li>Bromide</li> </ol> | <ol> <li>7. Nitrate</li> <li>8. Citrate</li> <li>9. Fumarate</li> <li>10. Sulfate</li> <li>11. Magnesium</li> <li>12. Calcium</li> </ol> |  |  |  |

| Time (min) | H₂O   | 0.1 M Ammonium formate, pH 3.65 |
|------------|-------|---------------------------------|
| -10        | 0.760 | 1.474                           |
| 0          | 80    | 20                              |
| 2          | 80    | 20                              |
| 22         | 0     | 100                             |
| 30         | 0     | 100                             |





A broad selection of inorganic and organic ions can be used as pharmaceutical counterions. It is highly desirable to separate both pharmaceutically important anions and cations within the same analysis and in a reasonable amount of time. This figure illustrates that Acclaim Trinity P2 column provides desired selectivity for the separation of mono- and multi-valent anions and cations – a total of twelve ions.

.....

### Electrolytes in sports beverages

| Acclaim Trinity P2                                                                         | column, 3 µm, 50 x 3.0mm                                                                                                                                                                                            |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase                                                                               | (A) Water<br>(B) 100 mM Ammonium formate, pH 3.65                                                                                                                                                                   |  |  |
| System                                                                                     | Dionex UltiMate 3000 RS                                                                                                                                                                                             |  |  |
| Temperature                                                                                | 30 °C                                                                                                                                                                                                               |  |  |
| Flow rate                                                                                  | 0.60 mL/min                                                                                                                                                                                                         |  |  |
| Injection volume                                                                           | 2 μL                                                                                                                                                                                                                |  |  |
| Detection Corona Veo (evaporator 55 °C, data rate 5 I<br>filter 2 sec, power function 1.5) |                                                                                                                                                                                                                     |  |  |
| (A) Sports drink (Orange flavor)<br>(B) Sports drink, zero-calorie (Fruit pu               |                                                                                                                                                                                                                     |  |  |
| Sample prep                                                                                | Decolorized with Dionex OnGuard-II P cartridge                                                                                                                                                                      |  |  |
| Peaks                                                                                      | <ol> <li>Sugars</li> <li>Ascorbic acid</li> <li>Phosphate</li> <li>Sodium</li> <li>Potassium</li> <li>Chloride</li> <li>Citrate</li> <li>Acesulfame</li> <li>Unknown</li> <li>Magnesium</li> <li>Calcium</li> </ol> |  |  |

| 45 -    | 1 | 4 |         |         |                                        |
|---------|---|---|---------|---------|----------------------------------------|
| PA<br>1 | 3 | 5 | 7       | 910     | 11<br>A                                |
| 0       | l | 5 | Minutes | 8<br>10 | —————————————————————————————————————— |

| Gradient | -8.0 | 0.0 | 1.0 | 11.0 | 20.0 |
|----------|------|-----|-----|------|------|
| A%       | 90   | 90  | 90  | 0    | 0    |
| В%       | 10   | 10  | 10  | 100  | 100  |



# Acclaim application-specific HPLC columns

## Acclaim application-specific HPLC columns

### Innovative chemistries tailored for challenging and critically important applications

Application-specific columns utilize novel and unique chemistries to provide superior resolution with ease of use for key pharmaceutical, environmental and food/beverage applications. These columns are designed and tested for specific application.

| Columns                 | Description                                                                                                                                                                                                                                        |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acclaim Organic Acid    | Fast organic acid analysis; including both aromatic and aliphatic organic acids                                                                                                                                                                    |
| Acclaim Surfactant      | Designed for the separation of surfactants including anionic, non-ionic, cationic, and amphoteric surfactants in various matrices                                                                                                                  |
| Acclaim Surfactant Plus | Designed for the separation of surfactants including anionic, non-ionic, cationic, and amphoteric surfactants in various matrices. The Surfactant Plus column is compatible with LC-MS instrumentation, and recommended for new method development |
| Acclaim Explosives E2   | Specialty columns to comply with EPA Method 8330; baseline resolution of all 14 explosive residues targeted by the EPA                                                                                                                             |
| Acclaim Trinity Q1      | Excellent for trace analysis of diquat and paraquat                                                                                                                                                                                                |
| Acclaim Carbonyl C18    | Separation of DNPH derivatives of aldehydes and ketones; including regulated methods U.S. EPA 554, EPA 8315, EPA 1667, EPA TO-11, and California Air Resources Board (CARB) Method 1004                                                            |
| Acclaim Carbamate       | Separation of carbamate pesticides specified in U.S. EPA Method 531.2                                                                                                                                                                              |
| Acclaim AmG C18         | Ion-pairing reversed-phase separation of aminoglycoside antibiotics                                                                                                                                                                                |

### Specifications for Acclaim application-specific HPLC columns

|                       | Acclaim<br>Organic<br>Acid | Acclaim<br>Surfactant | Acclaim<br>Surfactant<br>Plus | Acclaim<br>Explosives<br>E2 | Acclaim<br>Trinity<br>Q1 | Acclaim<br>Carbonyl<br>C18 | Acclaim<br>Carbamate   | Acclaim<br>AmG<br>C18 |
|-----------------------|----------------------------|-----------------------|-------------------------------|-----------------------------|--------------------------|----------------------------|------------------------|-----------------------|
| End-capped            | Yes                        | Yes                   | Yes                           | Yes                         | Yes                      | Yes                        | Yes                    | Yes                   |
| Particle shape        |                            | Spherical             |                               |                             |                          |                            |                        |                       |
| Particle size         | 3 μm<br>5 μm               | 3 μm<br>5 μm          | 3 μm<br>5 μm                  | 2.2 μm<br>3 μm<br>5 μm      | 3 µm                     | 2.2 μm<br>3 μm<br>5 μm     | 2.2 μm<br>3 μm<br>5 μm | 3 µm                  |
| Average pore diameter | 120 Å                      | 120 Å                 | 120 Å                         | 120 Å                       | 300 Å                    | 120 Å                      | 120 Å                  | 120 Å                 |
| Surface area          | 300 m²/g                   | 300 m²/g              | 300 m²/g                      | 300 m²/g                    | 100 m²/g                 | 300 m²/g                   | 300 m²/g               | 300 m²/g              |
| pH range              | 2–8                        | 2–8                   | 2.5–7.5                       | 2–8                         | 2.5–7.5                  | 2.5–7.5                    | 2.5–7.5                | 0.5–10                |

# Acclaim Organic Acid columns

### Optimized and application-tested for the analysis of hydrophilic organic acids

The Thermo Scientific Acclaim Organic Acid (OA) is a silica-based reversed-phase column designed for high-efficiency, high-throughput organic acids analysis. It offers unparalleled performance for separating hydrophilic aliphatic and aromatic organic acids at low pH with UV detection.

Acclaim Acid column is the recommended column for determining small hydrophilic organic acids, C1 to C7 aliphatic acids, and hydrophilic aromatic acid and is also valuable for the analysis and quality assurance of food and beverage products, pharmaceutical preparations, plating baths, and manufacturing chemicals, chemical intermediates, and environmental samples.

- Tested to guarantee consistent hydrophilic organic acid separations
- Compatible with 100% aqueous mobile phases
- Hydrolytic stability at low-pH conditions
- Ideal selectivity for separating a wide spectrum of organic acids
- Excellent column efficiency and peak shapes for organic acids

### Hydrophilic organic acids

| Acclaim OA colu  | mn, 5 µm, 4 × 250 mm                                                                                                                                                            |                                                                                                                                                                                              |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mobile phase     | 100mM Na <sub>2</sub> SO <sub>4</sub> , pH 2.65 (adjusted with methanesulfonic acid)                                                                                            |                                                                                                                                                                                              |  |
| Flow rate        | 0.60 mL/min                                                                                                                                                                     |                                                                                                                                                                                              |  |
| Injection volume | 5 µL                                                                                                                                                                            |                                                                                                                                                                                              |  |
| Detection        | UV, 210nm                                                                                                                                                                       |                                                                                                                                                                                              |  |
| Temperature      | 30 °C                                                                                                                                                                           |                                                                                                                                                                                              |  |
| Analytes         | <ol> <li>Oxalic acid 15 mg/L (ppm)</li> <li>Tartaric acid 120</li> <li>Formic acid 180</li> <li>Malic acid 120</li> <li>iso-Citric acid 120</li> <li>Lactic acid 180</li> </ol> | <ol> <li>7. Acetic acid 120</li> <li>8. Citric acid 120</li> <li>9. Succinic acid 120</li> <li>10. Fumaric acid 7</li> <li>11. cis-Aconitic acid</li> <li>12. trans-Aconitic acid</li> </ol> |  |

### Flexible methods development

Since the Acclaim OA can be operated at low pH with 100% aqueous buffers, as well as with organic solvents, many mobile phase options are available to optimize your organic acid separations. Modifying the pH of the mobile phase, as illustrated below, allows resolution and retention control.







### White wine analysis

| Acclaim OA colum | n, 5 µm, 250 x 4 mm                                                                                                    |
|------------------|------------------------------------------------------------------------------------------------------------------------|
| Mobile phase     | 0.1 M $\mathrm{Na_2SO_4},$ pH 2.68 (adjusted with MSA*)                                                                |
| Flow rate        | 0.60 mL/min                                                                                                            |
| Injection volume | 5 µL                                                                                                                   |
| Detection        | UV, 210 nm                                                                                                             |
| Sample           | OnGuard II P                                                                                                           |
| Temperature      | 30 °C                                                                                                                  |
| Peaks            | <ol> <li>Tartaric acid</li> <li>Malic acid</li> <li>Lactic acid</li> <li>Citric acid</li> <li>Succinic acid</li> </ol> |

\*Methanesulfonic acid



### Separation of seven food additives

| Mobile phase              | (A) 100 mM KH <sub>2</sub> PO <sub>4</sub> pH 3 (adjusted with MSA)<br>(B) Acetonitrile                                                    |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Flow rate                 | 0.6 mL/min                                                                                                                                 |
| Injection volume          | 5 μL                                                                                                                                       |
| Detection                 | UV, 210 nm                                                                                                                                 |
| Columns<br>temperature    | 50 °C (still air mode)                                                                                                                     |
| Pre-heater<br>temperature | 50 °C                                                                                                                                      |
| Peaks                     | <ol> <li>Citrate</li> <li>Acesulfame</li> <li>Saccharin</li> <li>Caffeine</li> <li>Aspartame</li> <li>Sorbate</li> <li>Benzoate</li> </ol> |

...

| Gradient | 0  | 5  | 7  | 7.1 | 10  |
|----------|----|----|----|-----|-----|
| A%       | 95 | 75 | 75 | 95  | End |
| В%       | 5  | 26 | 25 | 5   |     |



## Acclaim Surfactant and Surfactant Plus columns

### Column of choice for surfactant analysis using higher sensitivity detection: performance, versatility, throughput

The Thermo Scientific Acclaim Surfactant and Surfactant Plus columns are highefficiency, silica-based columns designed specifically for separating a wide variety of surfactants, including anionic, cationic, nonionic, ethoxylated and amphoteric surfactants. The surface chemistry is optimized for improved performance and higher throughput.



Acclaim Surfactant column can be used with evaporative light scattering detectors (ELSD), UV-Vis detectors (UV) or refractive index (RI) detection.

The Acclaim Surfactant Plus column is similar to the original Acclaim Surfactant column and exhibits exceptionally low bleed making it ideal for use with charged aerosol detectors (CAD) and mass spectrometers (MS). The Acclaim Surfactant Plus column, like the Acclaim Surfactant columns can be used to separate a wide variety of surfactants including isomers of xylene sulfonate. Additionally, these columns can be used with suppressed conductivity detectors (SCD); non-metallic PEEK hardware is available for best compatibility with Dionex ion chromatography systems.

Surfactants are widely used in industrial, agricultural, and pharmaceutical markets, in products as diverse as pesticides, detergent powders, petroleum products, cosmetics, and pharmaceuticals. The Acclaim Surfactant and Surfactant Plus columns are designed specifically for HPLC separation of these surfactants.

- Ideal selectivity for simultaneous separation of anionic, nonionic, cationic, and amphoteric surfactants
- Surfactant Plus compatible with multiple detectors including MS, CAD, ELSD and UV
- Excellent peak shapes, especially for cationic surfactants
- Compatible with highly aqueous mobile phases
- Improved resolution for ethoxylated surfactants
- Rugged separations under a variety of conditions

### Inorganic anion, hydrotropes, cationic, nonionic, amphoteric, and anionic surfactants

Acclaim Surfactant column, 5 µm, 150 x 4.6 mm (A) CH<sub>3</sub>CN Mobile phase (B) 0.1 M NH<sub>4</sub>OAc, pH 5.4 25% to 85% A in 25 min, then hold 85% A for 10 min Gradient Flow rate 1 mL/min Injection volume 25 µL Detection ELS detector Temperature 30 °C 1. Chloride 2. Bromide 3. Nitrate 4. Xylene sulfonate 5. Laurylpyridinium chloride 6. Lauryldimethylbenzyl-ammonium chloride 7. Triton X-100 Analytes 8. Cetyl betaine 9. Decyl sulfate 10. Dodecyl sulfate 11. C<sub>10</sub>-LAS 12. C<sub>11</sub>-LAS 13. C<sub>12</sub>-LAS

14. C<sub>13</sub>-LAS



#### **Cationic surfactants**

| Acclaim Surfactan | t Plus column, 3 μ                               | m, 150 x 3.0 mm                            |      |  |  |
|-------------------|--------------------------------------------------|--------------------------------------------|------|--|--|
| Mobile phase      | (A) Acetonitrile<br>(B) 100 mM form<br>(C) Water | (B) 100 mM formic acid                     |      |  |  |
| Flow rate         | 0.50 mL/min                                      |                                            |      |  |  |
| Injection volume  | 5μL                                              |                                            |      |  |  |
| Detection         | Conductivity with                                | blank subtraction                          |      |  |  |
| Temperature       | 25 °C                                            |                                            |      |  |  |
| Analytes          | ,                                                | Imonium<br>nonium<br>Imonium<br>/lammonium |      |  |  |
|                   |                                                  |                                            |      |  |  |
|                   | 0/ 8                                             | 0/ 10                                      | 0/ 0 |  |  |

|     | 2         | 3 4   |
|-----|-----------|-------|
| 5-  | 6<br>- I  | 7     |
| S I | 5         | 8     |
| 0   |           |       |
| 0   | 5 Minutes | 10 15 |

.....

| Time (min) | %A | %B | %C |
|------------|----|----|----|
| -12        | 5  | 5  | 90 |
| 0          | 5  | 5  | 90 |
| 12         | 40 | 5  | 55 |
| 20         | 40 | 5  | 55 |

### Simultaneous analysis of cationic, nonionic, amphoteric and anionic surfactants by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS)

.....

| Acclaim Surfactant Plus column, 3 µm, 150 x 3.0 mm |                                                                        |  |
|----------------------------------------------------|------------------------------------------------------------------------|--|
| Flow rate                                          | 0.6 mL/min                                                             |  |
| Injection volume                                   | 2 µL                                                                   |  |
| Detection                                          | Corona <i>ultra</i> (gain = 100 pA;<br>Filter = med; Neb temp = 20 °C) |  |
| Temperature                                        | 30 °C                                                                  |  |
| Sample                                             | Shampoo (40 x dilution with D.I. water and filtered)                   |  |

| Time (min) | Acetonitrile | 0.05 M Ammonium<br>Acetate, pH 5.2 |
|------------|--------------|------------------------------------|
| -8         | 25           | 75                                 |
| 0          | 25           | 75                                 |
| 10         | 80           | 20                                 |
| 20         | 80           | 20                                 |



#### Simultaneous analysis of cationic, nonionic, amphoteric and anionic surfactants by LC-ESI-MS

| Acclaim Surfactant Plus column, 3 µm, 150 x 2.1 mm |                                                                         |  |
|----------------------------------------------------|-------------------------------------------------------------------------|--|
| Chromatographic of                                 | conditions                                                              |  |
| System                                             | UltiMate 3000 RSLC                                                      |  |
| Temperature                                        | 30 °C                                                                   |  |
| Mobile phase                                       | (A) D.I. water<br>(B) 100 mM ammonium acetate, pH 5<br>(C) Acetonitrile |  |
| Flow rate                                          | 0.3 mL/min                                                              |  |

| Time (min) | %A | %B | %C |
|------------|----|----|----|
| -10        | 65 | 5  | 30 |
| 0          | 65 | 5  | 30 |
| 1          | 65 | 5  | 30 |
| 8          | 10 | 5  | 85 |
| 20         | 10 | 5  | 85 |

| MS conditions |                                           |
|---------------|-------------------------------------------|
| System        | MSQ Plus single quadrupole MS             |
| Interface     | Electrospray ionization (ESI)             |
| Probe temp.   | 450 °C                                    |
| Needle vol.   | 3 kV                                      |
| Nebulizer gas | Nitrogen at 85 psi                        |
| Scan mode     | Polarity switching full scan 100–1000 m/z |

••••••







## Acclaim Explosives E2 column

### The best solution for explosives analysis (EPA Method 8330)

Thermo Scientific Acclaim Explosives E2 columns are specifically designed to resolve all 14 explosives listed in EPA SW-846 Method 8330: nitroaromatics and nitramines by HPLC. The novel and unique chemistries of these columns provide superior resolution with complementary selectivities.

Acclaim Explosives E2 columns may be used as either a primary or a confirmatory column. The unique selectivity and versatility of this column provides a wider application range, including the analysis of explosives beyond United States Environmental Protection Agency (U.S. EPA) Method 8330 (ISO 22478).

- Acclaim E2 columns provide baseline resolution of all 14 compounds targeted by EPA Method 8330
- Columns available in 2.2 µm, 3 µm and 5 µm particle size
- Simple isocratic elution conditions
- Rugged columns with good lot-to-lot reproducibility

#### Rapid determination of EPA 8330A explosives

| Acclaim RSLC Ex  | olosives E2, 2.2 μι                                                                  | m, 100 x 2.1 mm                                                                                      |  |  |
|------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase     | Methanol:water                                                                       | Methanol:water 48:52 (v/v)                                                                           |  |  |
| Flow rate        | 0.34 mL/min (29                                                                      | 3 bar)                                                                                               |  |  |
| Injection volume | 1 µL                                                                                 |                                                                                                      |  |  |
| Detection        | UV, 254nm                                                                            |                                                                                                      |  |  |
| Temperature      | 31 °C                                                                                | 31 °C                                                                                                |  |  |
| Sample           | Calibration mix,                                                                     | Calibration mix, 25µg/mL in 50% acetontrile                                                          |  |  |
| Analytes         | 1. HMX<br>2. RDX<br>3. 1,3,5-TNB<br>4. 3,5-DNB<br>5. NB<br>6. 2,4,6-TNT<br>7. Tetryl | 8. 2,6-DNT<br>9. 2,4-DNT<br>10. 2-NT<br>11. 4-NT<br>12. 3-NT<br>13. 4-Am-2,6-DNT<br>14. 2-Am-4,6-DNT |  |  |



O<sub>2</sub>N

Degradation products of TNT Manufacturing impurities of TNT Internal standard



NO,

1,2-DNB

NO,

TNT

60





2-NT

2,6-DNT

O<sub>2</sub>N

-NO



NO.

4-NT

CH

NO<sub>2</sub> 2,4-DNT





NB

1,3-DNB



# Acclaim AmG C18 column

### Designed to provide rugged and reproducible reversed-phase chromatography of aminoglycoside antibiotics

Aminoglycoside antibiotics are commonly used as clinical and veterinary medicines to treat bacterial infections. HPLC using ion-pairing reversed-phase separations is an effective technique for simultaneous qualitative and quantitative determination of aminoglycosides.



- Excellent selectivity for the HPLC of aminoglycosides
- Superior resistance to acidic conditions for long column lifetime
- Easy-to-use with only aqueous mobile phase; TFA only, or TFA/HFBA or when PFPA is needed
- Compatible with simple rugged methods; no solvents are required
- High-efficiency and throughput

Mobile phase

Injection volume

Flow rate

Detection

Sample

Temperature

Acclaim AmG C18 column, 3 µm, 150 x 3.0 mm

2 µL

30 °C

100 mM TFA

0.425 mL/min

Gentamicin (1 mg/mL)



### Isocratic separation of gentamicin sulfate using 100 mM TFA as the mobile phase

Corona Veo RS (Filter = 5.0 s; Evaporation Temp =

35 °C; Data Rate = 5 Hz; Power Function = 1.00)

### Excellent low pH stability

The ion-pairing reversed-phase HPLC (IP-RPLC) separation of aminoglycoside antibiotics is generally performed under low pH conditions and therefore the stationary phase/column low pH stability is vital for these applications. The Acclaim AmG C18 column is specifically designed for analysis of aminoglycoside antibiotics, and compatible with these low pH conditions. The Acclaim AmG C18 columns are packed with a polymer encapsulated silica covalently bonded with C18 ligands. The polymer layer protects the siloxane linkage on the silica surface from hydrolysis when exposed to the low pH environment.



Hydrolytic stability is illustrated here, using low pH volatile perfluorinated carboxylic acids as the ion-pairing reagent, 100 mM trifluoroacetic acid (TFA) at high temperature.

| Excellent low pH stability |                                                     |                        |  |  |  |
|----------------------------|-----------------------------------------------------|------------------------|--|--|--|
| Acclaim AmG C18            | column and Typical C18 column, 3.0 × 150 mm         | 140% 7                 |  |  |  |
| Acid stress protoco        | I                                                   | 120% – Acclaim AmG C18 |  |  |  |
| Mobile phase               | 100 mM TFA                                          |                        |  |  |  |
| Flow rate                  | 0.425 mL/min                                        |                        |  |  |  |
| Temperature                | 80 °C                                               |                        |  |  |  |
| Performance test           |                                                     |                        |  |  |  |
| Mobile phase               | Acetonitrile/10 mM NH <sub>4</sub> OAc, 10/90 (v\v) |                        |  |  |  |
| Flow rate                  | 0.425 mL/min                                        | 2 = 40% - 1            |  |  |  |
| Injection volume           | 2 µL                                                | 20% -                  |  |  |  |
| Temperature                | 80 °C                                               |                        |  |  |  |
| Detection                  | UV, 220 nm                                          | 0%                     |  |  |  |
| Sample                     | Acetanilide                                         | Exposure time (h)      |  |  |  |

Shown below is the separation of structurally related aminoglycosides include Sisomicin, netilmicin, and etimicin. Other examples (Amikacin, Kanamycin, Tobbramycin, Arbekacin, Streptomycin, Ribostamycin, Paromyomycin, Neomycin, Spectoinomycin, Apramycin) of can be found in the product specification sheet.

#### Analysis of sisomicin, netilmicin, and etimicin

| Acclaim AmG C18 column, 3 $\mu\text{m},$ 3.0 $\times$ 150 mm |                                                                                                         |  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Mobile phase                                                 | 100 mM TFA                                                                                              |  |
| Flow rate                                                    | 0.425 mL/min                                                                                            |  |
| Injection volume                                             | 2 µL                                                                                                    |  |
| Temperature                                                  | 30 °C                                                                                                   |  |
| Detection                                                    | Corona Veo RS (Filter = 5.0 s; Evaporation temp = 35 °C; Data rate = 5 Hz; Power function = 1.00)       |  |
| Sample                                                       | 1. Sisomicin (0.2 mg/mL)<br>2. Netilmicin (1 mg/mL)<br>3. Etimicin (1 mg/mL)<br>4. Mixture (0.25 mg/mL) |  |



## Acclaim Trinity Q1 columns

### For trace analysis of diquat and paraquat

Thermo Scientific Acclaim Trinity Q1 columns are unique, high-efficiency, silica-based columns designed for the separation of the herbicides diquat and paraquat. These herbicides are toxic and residues are monitored in drinking water, wastewater and agricultural products. The Acclaim Trinity Q1 column is a tri-mode (WCX, WAX, RP) column based on nanopolymer silica hybrid (NSH) technology. It offers unmatched high-resolution and high-throughput trace analysis of the herbicides diquat and paraquat by LC-MS/MS and LC-UV (liquid chromatography with ultraviolet detection) methods.

- Excellent resolution of diquat and paraquat
- Good peak shape
- Fast analysis
- LC-MS compatible
- No ion-pairing reagent needed

#### **Diquat and paraquat**

| Acclaim Trinity Q1 colu     | mn, 3μm, 50 x 3.0mm                                                                                        |
|-----------------------------|------------------------------------------------------------------------------------------------------------|
| Mobile phase                | 25% ammonium acetate (100mM, pH 5.0); 75% acetonitrile                                                     |
| Flow rate                   | 0.5 mL/min                                                                                                 |
| Injection volume            | 5 μL                                                                                                       |
| Detection                   | Show Mass Spectrometric conditions and the scan events etc. table underneath are the peaks section         |
| Temperature                 | Ambient                                                                                                    |
| Mass spectrometric          | Thermo Scientific <sup>™</sup> TSQ Quantiva <sup>™</sup> Access<br>MAX Triple Quadrupole Mass Spectrometer |
| Interface                   | Heated Electrospary Ionization with HESI II probe                                                          |
| Spray voltage               | 1500 V                                                                                                     |
| Vaporizer temp              | 400 °C                                                                                                     |
| Sheath gas pressure         | 70                                                                                                         |
| Aux gas pressure            | 10                                                                                                         |
| Capillary temp              | 350 °C                                                                                                     |
| Quantitation mode<br>(SRM ) | Selected reaction monitoring                                                                               |

| Scan events             | Precursor | Quantitative | Confirmative |
|-------------------------|-----------|--------------|--------------|
|                         |           | SRM (CID)    | SRM (CID)    |
| Paraquat                | 185       | 169 (27)     | 170 (17)     |
| Paraquat-d <sub>6</sub> | 193       | 178 (17)     |              |
| Diquat                  | 183       | 157 (22)     | 130 (31)     |
| Diquat-d <sub>3</sub>   | 186       | 158 (22)     |              |







#### Method development

The Acclaim Trinity Q1 column is designed for applications using volatile buffers, such as ammonium acetate, which are compatible with MS and UV at (>225 nm). The column may be used with phosphate buffers when required. Ammonium acetate buffer is found to be effective for this application. The performance of the Acclaim Trinity Q1 column is based on reverse-phase and ion-exchange Mixed-Mode retention mechanism. The chromatography method can be optimized by adjusting mobile phase buffer concentration, solvent content, and pH.

#### Analysis of sisomicin, netilmicin, and etimicin

| Acclaim Trinity Q1 column, 3 µm, 3.0 × 50 mm         |                                                                       |  |
|------------------------------------------------------|-----------------------------------------------------------------------|--|
| Mobile phase                                         | 75/25 v/v CH <sub>3</sub> CN/ various conc. NH <sub>4</sub> OAc, pH 5 |  |
| Flow rate                                            | 0.60 mL/min                                                           |  |
| Injection volume                                     | 2 µL                                                                  |  |
| Temperature                                          | 30 °C                                                                 |  |
| DetectionUV, 290 nmSamplesDq and Pq (0.1 mg/mL each) |                                                                       |  |
|                                                      |                                                                       |  |



Buffer concentration affects retentions of both diquat and paraquat. Running the separation using various buffer concentrations are shown above. Higher buffer concentration shortens retention times. If using lower buffer concentration, the retention is longer with a better the separation. Note that the resolutions were all very good for all the tested buffer concentration. For fast analysis, the 25 mM would be recommended.

#### Analysis of sisomicin, netilmicin, and etimicin

| Acclaim Trinity Q1 column, 3 µm, 3.0 × 50 mm |                                  |  |
|----------------------------------------------|----------------------------------|--|
| Mobile phase                                 | MeCN/ 25 mM (total) NH₄OAc, pH 5 |  |
| Flow rate                                    | 0.60 mL/min                      |  |
| Injection volume                             | 2 µL                             |  |
| Temperature                                  | 30 °C                            |  |
| Detection                                    | UV, 290 nm                       |  |
| Samples                                      | Dq and Pq (0.1 mg/mL each)       |  |



Mobile phase organic solvent content affects retention and resolution of both diquat and paraquat. At 25 mM ammonium acetate, higher acetonitrile contents give better resolution. Typically, mobile phases containing 50 to 75% acetonitrile give excellent resolution and sufficient retention times. The retention time can be adjusted depending on sample matrix and interference.

Mobile phase pH has significant effect on the resolution of diquat and paraquat. It has been determined that pH 5  $\pm$  0.5 is suitable pH range for this application.

## Acclaim Carbamate columns

### Designed for baseline separation of carbamate pesticides specified in US EPA method 531.2

Thermo Scientific Acclaim Carbamate columns are designed for baseline separation of carbamates (N-methylcarbamate and N-methylcarbamoyloxime pesticides) specified in U.S. EPA Method 531.2. Carbamate pesticides are widely used throughout the world. Drinking water and raw surface water is monitored for the presence of carbamate pesticides and related compounds applying an established U.S. EPA Method 531.2 that uses HPLC with postcolumn derivatization. LC-MS is the method of choice for the ultimate sensitivity.

- Baseline separation of carbamate pesticides specified in U.S. EPA Method 531.2
- Use with either LC/post-column derivatization/fluorescence or LC-MS detection
- Available in 2.2, 3 and 5 µm particle size
- Compatible with both binary (methanol/water) and ternary (acetonitrile/methanol/water) mobile phase gradients
- High-efficiency, extremely low column bleed, and rugged column packing

### Carbamate standard – spiked rice samples

| Acclaim Carbamate column, 3 μm, 150 x 3.0 mm |                                                                                                                                                    |                                                                                                                                     |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mobile phase                                 | Methanol-H <sub>2</sub> O                                                                                                                          | Methanol-H <sub>2</sub> O                                                                                                           |  |  |
| Gradient                                     | , , ,                                                                                                                                              | Methanol, -4.0–0.0 min, 14%; 2.0 min, 20%; 8.0<br>min, 40%; 13.6–16 min, 70%                                                        |  |  |
| Flow rate                                    | 0.9 mL/min                                                                                                                                         |                                                                                                                                     |  |  |
| Injection volume                             | 250 µL                                                                                                                                             | 250 µL                                                                                                                              |  |  |
| Detection                                    | Excitation/330nm and E                                                                                                                             | Excitation/330nm and Emission/465nm                                                                                                 |  |  |
| Temperature                                  | 50 °C                                                                                                                                              | 50 °C                                                                                                                               |  |  |
| Analytes                                     | <ol> <li>Aldicarb sulfoxide</li> <li>Aldicarb sulfone</li> <li>Oxamyl</li> <li>Methomyl</li> <li>3-Hydroxy carbofuran</li> <li>Aldicarb</li> </ol> | <ol> <li>Propoxur</li> <li>Carbofuran</li> <li>Carbaryl</li> <li>10. 1-Naphthol</li> <li>Methiocarb</li> <li>BDMC (I.S.)</li> </ol> |  |  |



B: with dispersive SPE using PSA



### **LC-MS** method

Compared to fluorescence detection, mass spectrometric detection can significantly improve method selectivity and sensitivity. Figure 2 demonstrates excellent separation, high throughput (20 min. run time), and enhanced selectivity and sensitivity with MS detection achieved on a 2.1 × 150 mm Acclaim Carbamate column. This method has been successfully applied to the determination of carbamates in various types of water samples and performance was evaluated with respect to linearity, calibration range, detection limits, and recovery from a simulated ground water matrix.<sup>4</sup>

#### **DNPH** aldehydes and ketones

| Acclaim Carbamate          | e column, 3 μm, 2.1 × 150 mm                             |  |
|----------------------------|----------------------------------------------------------|--|
| Chromatographic conditions |                                                          |  |
| System                     | UltiMate 3000 HPLC system                                |  |
| Mobile phase               | (A) Methanol<br>(B) 1.0 mM ammonium formate<br>(C) Water |  |
| Flow rate                  | 300 µL/min                                               |  |
| Injection volume           | 20 µL                                                    |  |
| Detector                   | MSQ Plus single quadrupole mass spectrometer             |  |
| Mass spectrometric         | conditions                                               |  |
| Ionization interface       | Electrospray ionization (ESI) positive mode              |  |
| Detection mode             | Selected ion monitoring (SIM)                            |  |
|                            |                                                          |  |

| Time (min) | %A | %B | %C |
|------------|----|----|----|
| -4         | 10 | 5  | 85 |
| 0.0        | 10 | 5  | 85 |
| 2.0        | 10 | 5  | 85 |
| 15.0       | 65 | 5  | 30 |
| 15.1       | 90 | 5  | 5  |



## Acclaim Carbonyl C18 columns

### A silica-based, reversed-phase column designed specifically for separating DNPH derivatives of aldehydes and ketones

Thermo Scientific Acclaim Carbonyl C18 columns are silica-based reversed-phase columns designed specifically for separating DNPH derivatives of aldehydes and ketones. They exhibit superior resolution compared with other commercially available columns.

Aldehydes and ketones are common pollutants in air and water. Several standard methods have been developed to apply using dinitrophenylhydrazine (DNPH) to various environmental situations to measure these compounds. Some of the better known ones include California Air Resources Board (CARB) Method 1004 for vehicle exhaust, EPA Method 554 for drinking water, EPA Method 1667 for pharmaceutical wastewater, and EPA Method 8315 for general wastewater.

- Ideal selectivity for baseline resolution of DNPH derivatives of aldehydes and ketones regulated by various official methods, including EPA 554, EPA 8315, EPA 1667, EPA TO-11, and CARB 1004
- High-efficiency for UHPLC performance
- Rugged columns with good lot-to-lot reproducibility
- Proven robust methods

Gradient

A%

B%

-4.5

48

52

0.0

48

52

8.3

48

52

15.0

0

100

18.0

0

100

#### **DNPH** aldehydes and ketones

| Acclaim Carbonyl | RSLC column, 2.2 µm, 150 x 2.1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mobile phase     | (A) D.I. water<br>(B) Acetonitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Flow rate        | 0.400 mL/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Injection volume | 1 μL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Detection        | UV, 360nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Temperature      | 28 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Samples          | Calibration mixes diluted in methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Analytes         | <ol> <li>Formaldehyde DNPH</li> <li>Acetaldehyde DNPH</li> <li>Propionaldehyde DNPH</li> <li>Crotonaldehyde DNPH</li> <li>Crotonaldehyde DNPH</li> <li>Butyraldehyde DNPH</li> <li>Gyclohexanone DNPH</li> <li>Valeraldehyde DNPH</li> <li>Hexanal DNPH</li> <li>Heptanal DNPH</li> <li>Heptanal DNPH</li> <li>Octanal DNPH</li> <li>Octanal DNPH</li> <li>Decanal DNPH</li> <li>Acetone DNPH</li> <li>Acetone DNPH</li> <li>Acetone DNPH</li> <li>Butanone DNPH</li> <li>Butanone DNPH</li> <li>Butanone DNPH</li> <li>Butanone DNPH</li> <li>Butanone DNPH</li> <li>Isovaleraldehyde DNPH</li> <li>Isovaleraldehyde DNPH</li> <li>Isovaleraldehyde DNPH</li> <li>Yalylaldehyde DNPH</li> <li>Xylylaldehyde DNPH</li> </ol> |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





### Separation of 12 carbonyl compounds regulated by EPA Method 554

| Mobile phase    | (A) D.I. water<br>(B) Methanol                                                                                                                                                                                                                                                                                                                         |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow rate       | 0.5 mL/min                                                                                                                                                                                                                                                                                                                                             |
| njection volume | 1 μL                                                                                                                                                                                                                                                                                                                                                   |
| Temperature     | 42 °C                                                                                                                                                                                                                                                                                                                                                  |
| Detection       | UV, 360 nm, data collection rate at 10 Hz                                                                                                                                                                                                                                                                                                              |
| Sample          | Calibration mix, 50 µg/mL in methanol                                                                                                                                                                                                                                                                                                                  |
| Peaks           | <ol> <li>Formaldehyde DNPH</li> <li>Acetaldehyde DNPH</li> <li>Propionaldehyde DNPH</li> <li>Crotonaldehyde DNPH</li> <li>Crotonaldehyde DNPH</li> <li>Butyraldehyde DNPH</li> <li>Cyclohexanone</li> <li>DNPH Valeraldehyde</li> <li>Hexanal DNPH</li> <li>Heptanal DNPH</li> <li>Octanal DNPH</li> <li>Nonanal DNPH</li> <li>Decanal DNPH</li> </ol> |



| Gradient | -1.7 | 0.0 | 3.4 | 5.5 | 7.0 |
|----------|------|-----|-----|-----|-----|
| A%       | 30   | 30  | 30  | 0   | 0   |
| В%       | 70   | 70  | 70  | 100 | 100 |

#### References

- 1. Exploring Mixed-Mode Chromatography: Column Chemistry, Properties, and Applications, Xiaodong Liu, and Christopher Pohl; Thermo Fisher Scientific, Sunnyvale, CA, USA, Thermo Publication PN21137
- 2. http://files.alfresco.mjh.group/alfresco\_images/pharma//2015/03/24/17516363-2762-4507-b9a8-6487ae731afc/PN-PITTCON-MixedModeChrom.pdf
- 3. Mixed-Mode chromatography in pharmaceutical and biopharmaceutical applications, Journal of Pharmaceutical and Biomedical Analysis, K. Zhang, X. Liu, 128 (2016) 73-88
- 4. Wang, L., Liu, X., Henday, S.M. and Schnute, W.C. Improved LC-MS Method for the Determination of Carbamates in Water Samples (http://www.dionex.com/ en-us/ webdocs/77385-POHPLC-Carbamates-01Jul2009- LPN2295-01.pdf).

# Acclaim column selection guide

|                       | Acclaim column selection guide               |                                                                          |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             |                                                                                                                                                                |
|-----------------------|----------------------------------------------|--------------------------------------------------------------------------|-----------------|----------------|-----------------|------------------------------|----------------------------------|-------------|------------------|--------------------|--------------------|--------------------------|---|----------------------------|------------------|------------------------------|----------------------|-------------------------|------------------|-----------------------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                              |                                                                          |                 |                |                 |                              |                                  |             |                  | N                  | lived              | -Mod                     | ~ | HIL                        |                  | SEC                          | ٨٣                   | oplica                  | tion             | 0000                  | ifio |             |                                                                                                                                                                |
|                       |                                              |                                                                          | Acclaim 120 C18 | Acclaim 120 C8 | Acclaim 300 C18 | Acclaim Polar Advantage (PA) | Acclaim Polar Advantage II (PA2) | Acclaim C30 | Acclaim Phenyl-1 | Acclaim Trinity P1 | Acclaim Trinity P2 | Acclaim Mixed-Mode WAX-1 |   | Acclaim Mixed-Mode HILIC-1 | Acclaim HILIC-10 | Acclaim SEC-300 and SEC-1000 | Acclaim Organic Acid | Acclaim Surfactant/Plus | Acclaim Carbonyl | Acclaim Explosives E2 |      | Acclaim AmG | Example Aapplications                                                                                                                                          |
|                       | Neutral<br>molecules                         | High hydrophobicity<br>Intermediate hydrophobicity<br>Low hydrophobicity |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Fat-soluble vitamins, PAHs, glycerides<br>Steroids, phthalates, phenols, polyphenols<br>Acetaminophen, urea, polyethylene glycols                              |
|                       | Anionic<br>molecules                         | High hydrophobicity<br>Intermediate hydrophobicity<br>Low hydrophobicity |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | NSAIDs, phospholipids Aspirin, alkyl acids, aromatic acids Small organic acids, e.g. acetic acids                                                              |
| General applications  | Cationic<br>molecules                        | High hydrophobicity<br>Intermediate hydrophobicity<br>Low hydrophobicity |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Antidepressants Beta blockers, benzidines, alkaloids Antacids, pseudoephedrine, biogenic amines                                                                |
| Genera                | Amphoteric/<br>zwitterionic<br>molecules     | High hydrophobicity<br>Intermediate hydrophobicity<br>Low hydrophobicity |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Phospholipids Amphoteric surfactants, peptides Amino acids, aspartame, small peptides                                                                          |
|                       | Mixtures of<br>neutral, anionic,<br>cationic | Neutrals and acids Neutrals and bases Acids and bases                    |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Artificial sweeteners<br>Cough syrup<br>Drug active ingredient with counterion                                                                                 |
|                       | molecules                                    | Neutrals, acids, and bases<br>Anionic<br>Cationic                        |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Combination pain relievers, PEG<br>SDS, LAS, laureth sulfates<br>Quats, benzylalkonium in medicines                                                            |
|                       | Surfactants                                  | Nonionic<br>Amphoteric<br>Hydrotropes                                    |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Triton X-100 in washing tank<br>Cocoamidopropyl betaine<br>Xylenesulfonates in handsoap                                                                        |
|                       | Organic acids                                | Surfactant blends<br>Hydrophobic<br>Hydrophilic                          |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Nonionic and anionic surfactants Aromatic acids, fatty acids Organic acids in soft drinks, pharmaceuticals                                                     |
| tions                 |                                              | Explosives<br>Carbonyl compounds<br>Phenols<br>Chlorinated/Phenoxy acids |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | U.S. EPA Methods 8330, 8330B<br>U.S. EPA Methods 1667, 555, 0T-11; CA CARB 1004<br>Compounds regulated by U.S. EPA 604<br>U.S. EPA Method 555                  |
| Specific applications | Environmental contaminants                   | Triazines<br>Nitrosamines<br>Benzidines<br>Perfluorinated acids          |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Compounds regulated by U.S. EPA 619<br>Compounds regulated by U.S. EPA Method 8270<br>U.S. EPA Method 605<br>Dionex TN73                                       |
| S                     |                                              | Microcystins<br>Isocyanates<br>Carbamate insecticides                    |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | US. OSHA Methods 42, 47<br>U.S. PA Methods 531.2                                                                                                               |
|                       | Vitamins                                     | Water-soluble vitamins<br>Fat-soluble vitamins<br>Anions                 |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Vitamins in dietary supplements<br>Vitamin pills<br>Inorganic anions and organic acids in drugs                                                                |
|                       | Pharmacutical counterions                    | Cations<br>Mixture of Anions and Cations<br>API and counterions          |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Inorganic cations and organic bases in drugs<br>Screening of pharmaceutical counterions<br>Naproxen Na <sup>+</sup> salt, metformin Cl <sup>-</sup> salt, etc. |
|                       | Industry                                     | Hydrophilic cations<br>Water soluble Polymers                            |                 |                |                 |                              |                                  |             |                  |                    |                    |                          |   |                            |                  |                              |                      |                         |                  |                       |      |             | Antibiotics, aminoglycosides<br>PEG, PVP, PAA, PEI                                                                                                             |

# Ordering information

| Particle<br>size (µm) | Format           | Length<br>(mm) | ID<br>(mm) | 120 C18  | 120 C8 | Polar<br>Advantage | Polar<br>Advantage<br>II | Phenyl-1 | C30    | HILIC-10 | Mixed-<br>Mode<br>HILIC-1 | Mixed-Mode<br>WAX-1 | Mixed-Mode<br>WCX-1 |
|-----------------------|------------------|----------------|------------|----------|--------|--------------------|--------------------------|----------|--------|----------|---------------------------|---------------------|---------------------|
| Acclaim               | analytical       | columns        |            |          |        |                    |                          |          |        |          |                           |                     |                     |
|                       |                  | 30             | 2.1        | 071400   | 072614 |                    | 071402                   |          |        |          |                           |                     |                     |
|                       |                  |                | 3.0        |          |        | 072625             |                          |          |        |          |                           |                     |                     |
|                       |                  | 50             | 2.1        | 068981   | 072615 | 072622             | 068989                   |          |        |          |                           |                     |                     |
|                       | UHPLC            |                | 3.0        | 071605   |        |                    | 071608                   |          |        |          |                           |                     |                     |
|                       | column           | 75             | 3.0        | 075697   |        |                    |                          |          |        |          |                           |                     |                     |
| 2.2                   |                  | 100            | 2.1        | 068982   | 072616 | 072623             | 068990                   |          |        |          |                           |                     |                     |
|                       |                  |                | 3.0        | 071604   | 072620 |                    | 071607                   |          |        |          |                           |                     |                     |
|                       |                  | 150            | 2.1        | 071399   | 072617 | 072624             | 071401                   |          |        |          |                           |                     |                     |
|                       |                  | 250            | 2.1        | 074812   | 074811 | 074813             | 074814                   |          |        |          |                           |                     |                     |
|                       | Vanguish         | 150            | 2.1        | 071399-V |        |                    | 071401-V                 |          |        |          |                           |                     |                     |
|                       |                  | 250            | 2.1        | 074812-V |        |                    | 074814-V                 |          |        |          |                           |                     |                     |
|                       |                  | 33             | 3.0        | 066272   | -      |                    | 066276                   |          |        |          |                           |                     |                     |
|                       |                  |                | 2.1        | 059128   | 059122 | 063174             | 077999                   |          | 078666 |          |                           |                     |                     |
|                       |                  | 50             | 3.0        |          | -      |                    | 068973                   |          | 078663 |          | 071912                    | 071908              | 071910              |
|                       |                  |                | 4.6        | 059131   | 059125 | -                  | 063189                   |          | 078661 |          |                           |                     |                     |
|                       |                  | 75             | 3.0        | 066273   | -      | 066275             | 066277                   |          |        |          |                           |                     |                     |
|                       |                  |                | 2.1        | 059129   | 059123 | 061316             | 077998                   |          | 078665 |          |                           |                     |                     |
| 3.0                   | HPLC             | 100            | 3.0        | 076186   |        | 076214             | 078000                   | 074693   | 078662 |          |                           |                     |                     |
| 0.0                   | column           |                | 4.6        | 059132   | 059126 |                    | 078001                   |          | 078660 |          |                           |                     |                     |
|                       |                  |                | 2.1        | 059130   | 059124 | 061317             | 063187                   | 071971   | 075725 | 074259   | 070091                    | 070089              | 070093              |
|                       |                  | 150            | 3.0        | 063691   | 068970 | 063693             | 063705                   | 071970   | 075724 | 074258   | 070090                    | 070088              | 070092              |
|                       |                  |                | 4.0        |          |        |                    |                          |          |        |          |                           |                     |                     |
|                       |                  |                | 4.6        | 059133   | 059127 | 061318             | 063191                   | 071969   | 075723 | 074257   |                           |                     |                     |
|                       |                  | 250            | 2.1        | 076187   |        |                    | 077997                   |          | 078664 |          |                           |                     |                     |
|                       |                  | 200            | 3.0        | 070077   |        | 070079             | 070080                   |          | 075726 |          |                           |                     |                     |
|                       |                  | 50             | 2.1        | 059142   | 059134 | -                  | -                        |          |        |          |                           |                     |                     |
|                       |                  |                | 4.6        | 059146   | 059138 | 061319             | -                        |          |        |          |                           |                     |                     |
|                       |                  | 100            | 2.1        | 059143   |        | -                  | -                        |          |        |          |                           |                     |                     |
|                       |                  | 100            | 4.6        | 059147   | 059139 | -                  | -                        |          |        |          |                           |                     |                     |
|                       |                  |                | 2.1        | 059144   | 059136 | -                  | -                        |          |        |          | 066847                    | 067084              | 068371              |
|                       | HPLC             | 150            | 4.0        |          |        |                    |                          |          |        |          |                           |                     |                     |
| 5.0                   | column           |                | 4.6        | 059148   | 059140 | 061320             | 063197                   |          | 075719 |          | 066843                    | 064984              | 068353              |
|                       |                  |                | 7.8        |          |        |                    |                          |          |        |          |                           |                     |                     |
|                       |                  | 250            | 2.1        | 059145   | 059137 | -                  | -                        |          |        |          |                           |                     |                     |
|                       |                  |                | 4.0        |          |        |                    |                          |          |        |          |                           |                     |                     |
|                       |                  |                | 4.6        | 059149   | 059141 | 061321             | 063199                   | 079697   | 075718 |          | 066844                    | 064985              | 068352              |
|                       |                  |                | 4.6        |          |        |                    |                          |          |        |          |                           |                     |                     |
|                       |                  |                | 7.8        |          |        |                    |                          |          |        |          |                           |                     |                     |
|                       | HPLC             | 150            | 7.8        |          |        |                    |                          |          |        |          |                           |                     |                     |
| 7.0                   | column           | 300            | 4.6        |          |        |                    |                          |          |        |          |                           |                     |                     |
|                       |                  |                | 7.8        |          |        |                    |                          |          |        |          |                           |                     |                     |
| Acclaim gua           | ards             |                |            |          |        |                    |                          |          |        |          |                           |                     |                     |
|                       | Guard            |                | 2.1        |          |        |                    |                          |          |        | 074263   |                           |                     |                     |
| 3.0                   | cartridge        | 10             | 3.0        |          |        |                    |                          | 071974   |        | 074261   |                           |                     |                     |
|                       |                  |                | 4.6        |          |        |                    |                          | 071973   |        | 074262   |                           |                     |                     |
|                       | Guard            |                | 2.1        | 069689   | 069688 | 069691             | 069692                   |          | 075722 |          | 069694                    | 069686              | -                   |
| 5.0                   | cartridge        | 10             | 3.0        | 071981   | 071979 | 071983             | 071985                   |          | 075721 |          | 071913                    | 071909              | 071911              |
| 5.0                   |                  |                | 4.6        | 069695   | 069696 | 069698             | 069699                   |          | 075720 |          | 069706                    | 069704              | 069705              |
|                       | Guard<br>column  | 33             | 4.6        |          |        |                    |                          |          |        |          |                           |                     |                     |
| 7.0                   | Guard<br>column  | 33             | 4.6        |          |        |                    |                          |          |        |          |                           |                     |                     |
|                       | ards holders     |                |            |          |        |                    |                          |          |        |          |                           |                     |                     |
|                       | rd cartridge ho  |                |            | 069580   | 069580 | 069580             | 069580                   | 069580   | 069580 | 069580   | 069580                    | 069580              | 069580              |
|                       | rd cartridge-co  | · · · ·        |            | 074188   | 074188 | 074188             | 074188                   | 074188   | 074188 | 074188   | 074188                    | 074188              | 074188              |
| Acclaim gua           | rd kit (Holder a | and coupler)   |            | 069707   | 069707 | 069707             | 069707                   | 069707   | 069707 | 069707   | 069707                    | 069707              | 069707              |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trinity P1 | Trinity P2 | 300 C18 | Organic<br>Acid | Surfactant | Surfactant<br>Plus | Carbonyl<br>C18 | Carbamate<br>C18 | Explosives E2 | AmG C18 | Trinity Q1 | SEC-1000 | SEC-300 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|---------|-----------------|------------|--------------------|-----------------|------------------|---------------|---------|------------|----------|---------|
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| Image: sector         |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| Image: sector         |            |            |         |                 |            |                    | 077972          | 075597           | 076225        |         |            |          |         |
| Image: sector         |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| 071388         085433         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>077973</td><td>075596</td><td>076226</td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |            |         |                 |            |                    | 077973          | 075596           | 076226        |         |            |          |         |
| 1071388         085433         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| 1071398     085433     n     n     n     n     n     n     n     n     n     n     n     n       071397     085432     1     1     1     07895     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| 1071398     085433     n     n     n     n     n     n     n     n     n     n     n     n       071397     085432     1     1     1     07895     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| 060285         060385         060 000         060385         060 000         079955         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td></td> <td></td> <td>060263</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |            | 060263  |                 |            |                    |                 |                  |               |         |            |          |         |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 071388     | 085433     | 060265  |                 |            |                    |                 |                  |               |         | 083241     |          |         |
| 1071387         08543         1         0         078952         1         078952         07008         078952         07008         079083         085733         0         0           075564         063684         070086         070085         078950         079010         072925         070082         088753         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            | 000203  |                 |            |                    |                 |                  |               |         |            |          |         |
| Image         Image <th< td=""><td>071389</td><td>085432</td><td></td><td></td><td></td><td>078955</td><td></td><td></td><td></td><td></td><td>079717</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 071389     | 085432     |         |                 |            | 078955             |                 |                  |               |         | 079717     |          |         |
| 075563         063684         070086         070084         078950         079010         079226         070082         088755         1         1         1           0         060266         0         078950         078950         070081         0         088757         0         0           1         0         060266         0         078950         0         070081         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 071387     | 085434     |         |                 |            | 078952             |                 |                  |               |         | 079715     |          |         |
| 075563         063684         070086         070084         078950         079010         079226         070082         088755         1         1         1           0         060266         0         078950         078950         070081         0         088757         0         0           1         0         060266         0         078950         0         070081         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 075564     |            | 060264  | 070097          | 070095     | 079054             | 070011          | 072027           | 070002        | 000752  |            |          |         |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| Image: sector         |            |            | 060266  |                 |            |                    |                 | 072925           |               | 088757  |            |          |         |
| Image: state         |            |            |         |                 |            | 078953             | 070000          |                  | 070001        |         |            |          |         |
| Image: state s |            |            |         |                 |            |                    | 079009          |                  | 070081        |         |            |          |         |
| Image: state s |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| Image: state s |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| Image: state s |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| Image: sector  |            |            |         | 062002          | 068123     |                    |                 |                  |               |         |            |          |         |
| Image: series of the series  |            |            |         | 002303          | 063201     | 082768             |                 |                  |               |         |            |          |         |
| Image: state sta                 |            |            |         |                 |            |                    |                 |                  |               |         |            |          | 079726  |
| Image: state sta                 |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| Image: state sta                 |            |            |         | 062902          | 062202     | 090767             | 092014          | 072024           | 064200        |         |            |          |         |
| Image: state in the state                 |            |            |         |                 | 003203     | 002707             | 003214          | 072924           | 004309        |         |            |          | 079723  |
| Image: state in the state                 |            |            |         |                 |            |                    |                 |                  |               |         |            |          | 079725  |
| Image: Normal Sector         |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| 071391         085435         069690           079012         072930         088754              071390         085436            079013         072929         088756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |            |         |                 |            |                    |                 |                  |               |         |            |          |         |
| 071390       085436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |            |         |                 |            |                    |                 |                  |               |         |            | 079721   |         |
| Image: Normal System       069697       Image: Normal System       079014       072928       088758       Image: Normal System       Image: Normal System         Image: Normal System       069697       071987       071991       078959       Image: Normal System       083244       Image: Normal System       083244       Image: Normal System       Image: Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 071391     | 085435     | 069690  |                 |            |                    | 079012          | 072930           |               | 088754  |            |          |         |
| Image: Sector of the sector                | 071390     | 085436     |         |                 |            |                    | 079013          |                  |               |         |            |          |         |
| Image: Constraint of the system of the sy                |            |            | 069697  |                 | 000000     | 070000             | 079014          | 072928           |               | 088758  | 000044     |          |         |
| Image: Constraint of the system of the sy                |            |            |         | 071987          |            |                    |                 |                  | 071989        |         |            |          |         |
| Image: Second                |            |            |         |                 |            |                    |                 |                  |               |         | 0/0/10     |          |         |
| Image: Constraint of the second sec        |            |            |         |                 |            |                    |                 |                  |               |         |            |          | 082740  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |         |                 |            |                    |                 |                  |               |         | 000700     |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |         |                 |            |                    |                 |                  |               |         | 082739     |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 069580     | 069580     | 069580  | 069580          | 069580     | 069580             | 069580          | 069580           | 069580        | 069580  | 069580     | 069580   | 069580  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |         |                 |            |                    |                 |                  |               |         |            |          | 074188  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |         |                 |            |                    |                 |                  |               |         |            |          | 069707  |

# thermo scientific

| İ  | i  | İ  | İ  | İ  | i  | i  | İ. | i  | İ |  |
|----|----|----|----|----|----|----|----|----|---|--|
| Ī  | Ī  | Ī  | Ī  | Ī  | Ī  | Ī  | Ī  | Ī  | Ī |  |
|    |    |    |    |    |    |    |    |    |   |  |
| Į. | Į. | Į. | Į. | Į. | Į. | Į. | Į. | Į. | L |  |
| ļ  | ļ  | ļ  | ļ  |    | ļ  | ł  | ļ  | ļ  | ļ |  |

### Expect reproducible results with sample prep, columns and vials









Don't see what you need? We would be happy to discuss your specific requirements. Please contact your local sales representative for custom orders.

### Find out more at thermofisher.com/acclaim



© 2020 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all locations. Please consult your local sales representative for details. **BR22033-EN 0320S**