INOVATIVNÍ IONTOVÉ ZDROJE

Jan Buček

DART (Direct Analysis in Real Time)

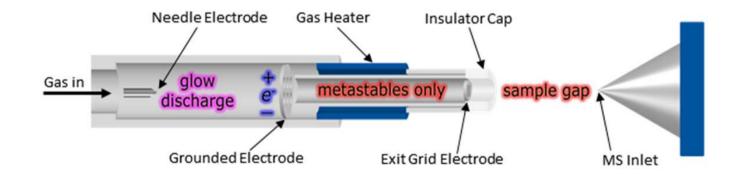
DART (Direct Analysis in Real Time)

SESI (Secondary Electrospray Ionization)

DART (Direct Analysis in Real Time)

SESI (Secondary Electrospray Ionization)

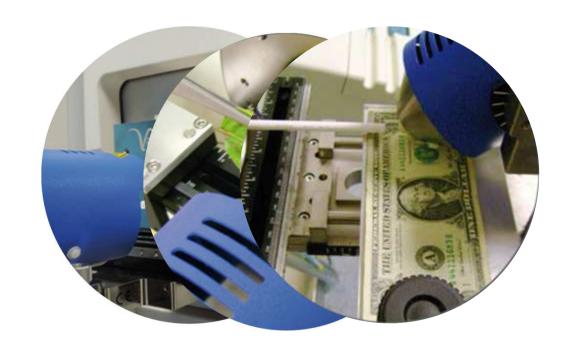
SICRIT (Soft Ionization by Chemical Reaction in Transfer)



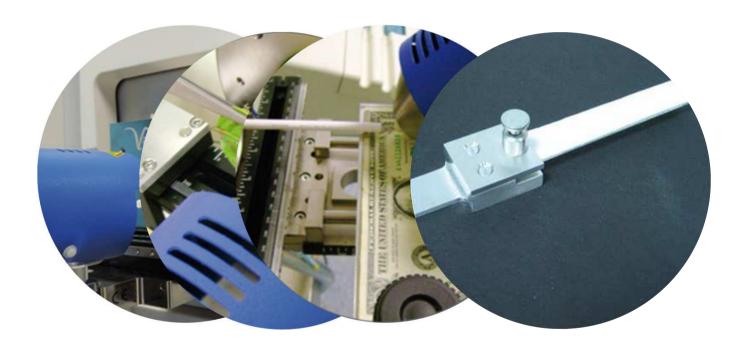
DART (Direct Analysis in Real Time) - Princip fungování

Multi DIP-it Holder

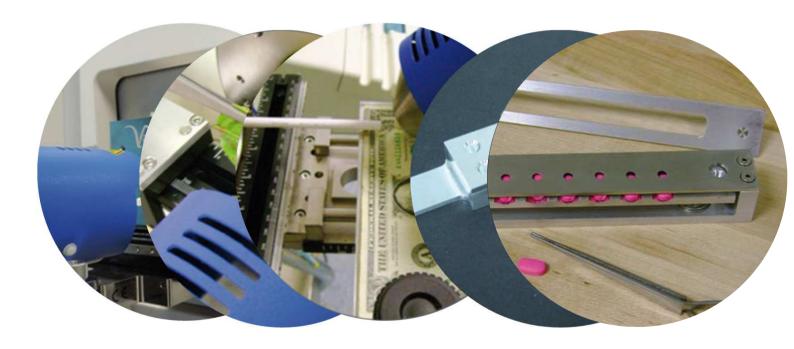
Adjustable Tweezer Base



XY Scanner



TLC Block



Tablet Carrier

DART SVP - Aplikace

Anal Bioanal Chem (2012) 403:2807-2812 DOI 10.1007/s00216-012-5853-6

TECHNICAL NOTE

Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using direct analysis in real time (DART) coupled to an Exactive benchtop orbitrap mass spectrometer

Elizabeth Crawford · Brian Musselman

Received: 16 December 2011 / Revised: 31 January 2012 / Accepted: 7 February 2012 / Published online: 25 February 2012 © Springer-Verlag 2012

Abstract Rapid screening of pesticides present on the surfaces of fruits and vegetables has been facilitated by using a Direct Analysis in Real Time (DART®) open air surface desorption ionization source coupled to an Exactive® highresolution accurate mass benchtop orbitrap mass spectrometer. The use of cotton and polyester cleaning swabs to collect and retain pesticides for subsequent open air desorption ionization is demonstrated by sampling the surface of various produce to which solutions of pesticides have been applied at levels 10 and 100 times below the tolerance levels established by the United States Environmental Protection Agency (US EPA). Samples analyzed include cherry tomatoes, oranges, peaches and carrots each chosen for their surface characteristics which include: smooth, pitted, fuzzy, and rough respectively. Results from the direct analysis of fungicides on store-bought oranges are also described. In all cases, the swabs were introduced directly into the heated ionizing gas of the DART source resulting in production of protonated pesticide molecules within seconds of sampling. Operation of the orbitrap mass spectrometer at 25,000 fullwidth half maximum resolution was sufficient to generate high-quality accurate mass data. Stable external mass calibration eliminated the need for addition of standards typically required for mass calibration, thus allowing multiple analyses to be completed without instrument recalibration.

Published in the special paper collection Recent Advances in Food Analysis with guest editors J. Hajslova, R. Krska, M. Nielen.

E. Crawford () · B. Musselman

Keywords Direct analysis in real time (DART) - Pesticide screening - High-resolution accurate mass (HRAM) -Benchtop orbitrap - Surface analysis

Introduction

Direct analysis in real time ionization coupled with mass spectrometry (DART-MS) has been gaining momentum in the past few years in food quality and food safety, particularly in the application areas of authenticity [1-3], adulteration [4, 5], contamination [6-11], and food packaging [12, 13]. A review paper on the challenging applications in food quality and safety accomplished with the DART technique gives a perspective of where this technology has progressed to over the past 4 years [14]. The increase in concern with the quality of food has been growing with the demands of expanding global trade markets. The focus on development of faster and simpler analytical ionization techniques for mass spectrometric approaches has also flourished in the past 7 years where there is a need to always get the results faster, with lower analytical costs and minimized sample preparation steps [15-18]. In recent publications, the United States Food and Drug Administration (US FDA) scientists have developed a DART-based method utilizing high-resolution accurate mass detection to rapid screening of pesticides on the surfaces of fruits and vegetables with the objective of creating a simple protocol for testing that might be deployed at selected border points of entry. Using their experimental protocols pesticide screening per sample was completed in under 3 min per swab [6, 7]. The use of such a rapid method

DART SVP - Aplikace

Anal Bioanal Chem (2012) 403:2807-2812 DOI 10.1007/s00216-012-5853-6

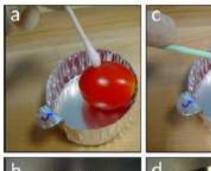
TECHNICAL NOTE

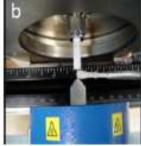
Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using direct analysis in real time (DART) coupled to an Exactive benchtop orbitrap mass spectrometer

Elizabeth Crawford · Brian Musselman

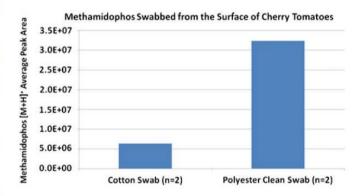
Received: 16 December 2011 / Revised: 31 January 2012 / Accepted: 7 February 2012 / Published online: 25 February 2012 © Springer-Verlag 2012

Abstract Rapid screening of pesticides present on the surfaces of fruits and vegetables has been facilitated by using a Direct Analysis in Real Time (DART®) open air surface desorption ionization source coupled to an Exactive® highresolution accurate mass benchtop orbitrap mass spectrometer. The use of cotton and polyester cleaning swabs to collect and retain pesticides for subsequent open air desorption ionization is demonstrated by sampling the surface of various produce to which solutions of pesticides have been applied at levels 10 and 100 times below the tolerance levels established by the United States Environmental Protection Agency (US EPA). Samples analyzed include cherry tomatoes, oranges, peaches and carrots each chosen for their surface characteristics which include: smooth, pitted, fuzzy, and rough respectively. Results from the direct analysis of fungicides on store-bought oranges are also described. In all cases, the swabs were introduced directly into the heated ionizing gas of the DART source resulting in production of protonated pesticide molecules within seconds of sampling. Operation of the orbitrap mass spectrometer at 25,000 fullwidth half maximum resolution was sufficient to generate high-quality accurate mass data. Stable external mass calibration eliminated the need for addition of standards typically required for mass calibration, thus allowing multiple analyses to be completed without instrument recalibration.

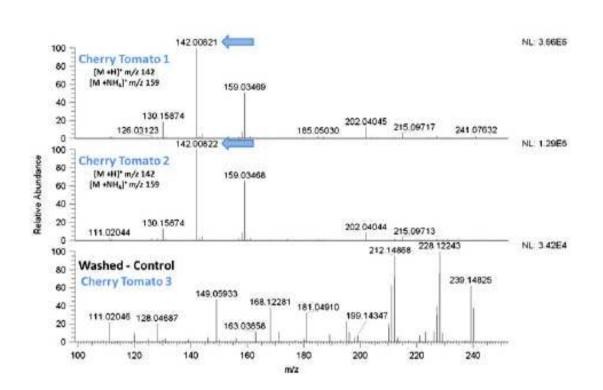

Published in the special paper collection Recent Advances in Food Analysis with guest editors J. Hajslova, R. Krska, M. Nielen.

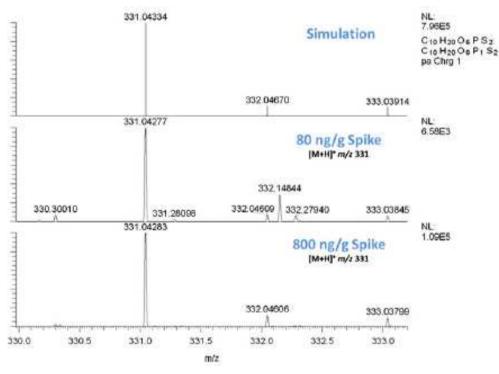

E. Crawford () · B. Musselman

Keywords Direct analysis in real time (DART) - Pesticide screening - High-resolution accurate mass (HRAM) -Benchtop orbitrap - Surface analysis


Introduction

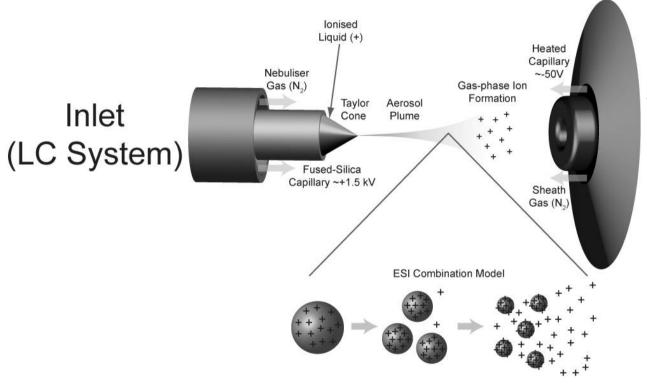
Direct analysis in real time ionization coupled with mass spectrometry (DART-MS) has been gaining momentum in the past few years in food quality and food safety, particularly in the application areas of authenticity [1-3], adulteration [4, 5], contamination [6-11], and food packaging [12, 13]. A review paper on the challenging applications in food quality and safety accomplished with the DART technique gives a perspective of where this technology has progressed to over the past 4 years [14]. The increase in concern with the quality of food has been growing with the demands of expanding global trade markets. The focus on development of faster and simpler analytical ionization techniques for mass spectrometric approaches has also flourished in the past 7 years where there is a need to always get the results faster, with lower analytical costs and minimized sample preparation steps [15-18]. In recent publications, the United States Food and Drug Administration (US FDA) scientists have developed a DART-based method utilizing high-resolution accurate mass detection to rapid screening of pesticides on the surfaces of fruits and vegetables with the objective of creating a simple protocol for testing that might be deployed at selected border points of entry. Using their experimental protocols pesticide screening per sample was completed in under 3 min per swab [6, 7]. The use of such a rapid method




DART SVP - Aplikace

Methamidophos spike 200 ppb

Malathion spike 80 / 800 ppb

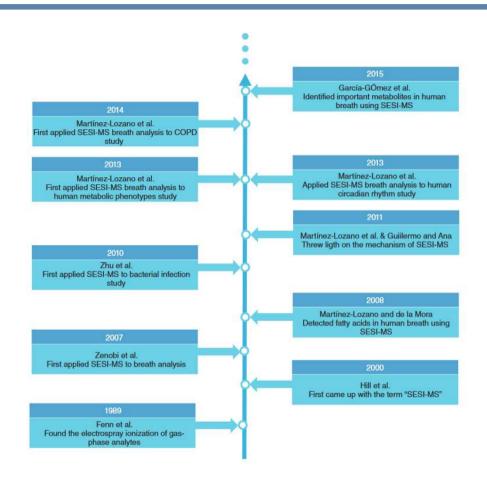


SESI (Secondary Electrospray Ionization)

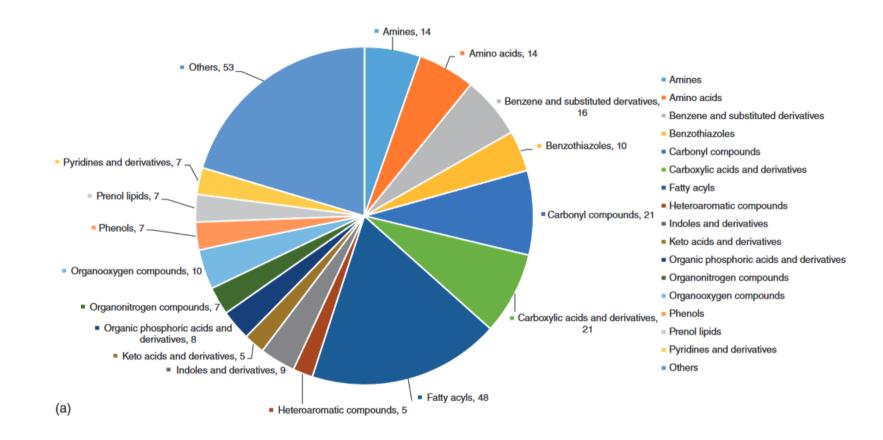
ESI sv SESI

Mass
Spectrometer
Ion
Source
Region

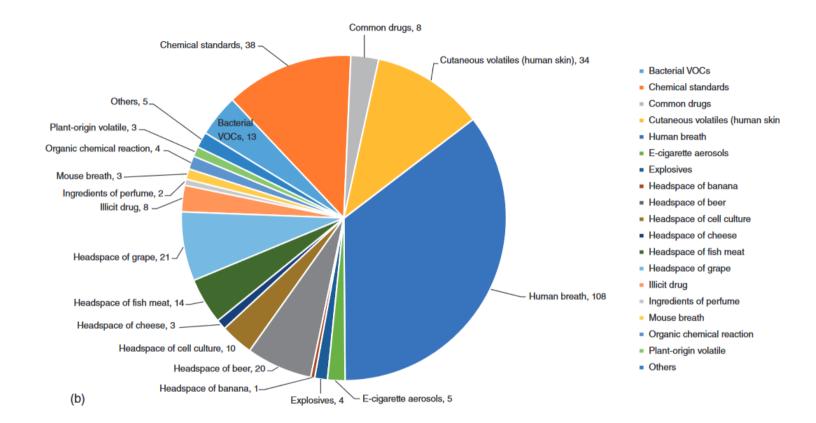
SESI – Princip fungování



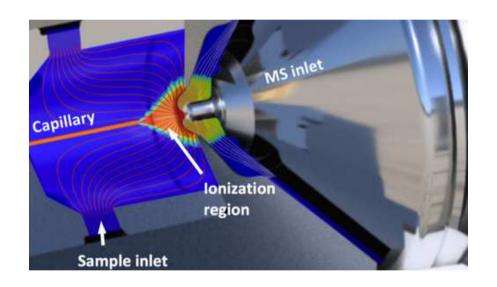
SESI - Historie



SESI – Analytická variabilita



SESI – Analytická variabilita

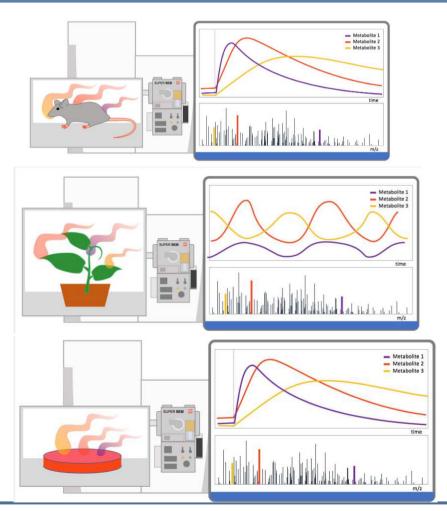


SESI - Interface

SESI - Interface

Analýza dechu

Metabolomické profilování



SESI - Interface

Metabolomické profilování

SESI - Aplikace

Respiration

Clinical Investigations

Respiration 2014;87:301-310 DOI: 10.1159/000357785

Accepted after revision: December 3 Published online: February 19, 2014

Breath Analysis in Real Time by Mass Spectrometry in Chronic Obstructive Pulmonary Disease

Pablo Martinez-Lozano Sinues^a Lukas Meier^a Christian Berchtold^a Mark Ivanov^d Noriane Sievi^b Giovanni Camen^b Malcolm Kohler^{b, c} Renato Zenobia

^aDepartment of Chemistry and Applied Biosciences, ETH Zurich, ^bPulmonary Division, University Hospital Zurich, and ^cZurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; ^dInstitute for Energy Problems of Chemical Physics, Russian Academy of Science, Moscow, Russian Federation

Key Words

Breath test - Chronic obstructive pulmonary disease -Exhaled biomarkers

nique to analyze breath in real time could be useful to differentiate breathprints from chronic obstructive pulmonary disease (COPD) patients and controls (smokers and nonsmokers). Methods: We studied 61 participants including 25 COPD patients [Global Initiative for Obstructive Lung Disease (GOLD) stages I-IVJ, 25 nonsmoking controls and 11 smoking controls. We analyzed their breath by MS in real healthy nonsmokers (n = 25), COPD (all stages; n = 25) versus pose of improving diagnostics [2]. healthy smokers (n = 11) and mild COPD (GOLD stages I/II;

KARGER

E-Mail karger@karger.com www.karger.com/res

© 2014 S. Karger AG, Basel 0025-7931/14/0874-0301\$39 50/0

smoking controls), 88% sensitivity and 92% specificity (COPD vs. nonsmoking controls) and 92.3% sensitivity and 83.3% specificity (GOLD I/II vs. GOLD III/IV). Acetone and indole were identified as two of the discriminating exhaled molecules. Conclusions: We conclude that real-time MS may be a useful technique to analyze and characterize the metabo-Background: It has been suggested that exhaled breath lome of exhaled breath. The acquisition of breathprints in a contains relevant information on health status. Objectives: rapid manner may be valuable to support COPD diagnosis We hypothesized that a novel mass spectrometry (MS) tech-

Introduction

Chronic obstructive pulmonary disease (COPD) is a complex illness, which is sometimes difficult to properly time. Raw mass spectra were then processed and statistical-diagnose and for which many fundamental questions rely analyzed. Results: A panel of discriminating mass-spectral main unanswered [1]. There is a clear need to increase our features was identified for COPD (all stages; n = 25) versus knowledge of the COPD phenotype for the ultimate pur-

Taking samples from the lung itself (e.g. induced spun = 13) versus severe COPD (GOLD stages III/IV; n = 12). A tum) to perform analytical measurements can be difficult, blind classification (i.e. leave-one-out cross validation) re- and for this reason the analysis of exhaled breath is elicitsulted in 96% sensitivity and 72.7% specificity (COPD vs. ing considerable interest as it offers the unique advantage

Renato Zenobi ETH Zurich Department of Chemistry and Applied Biosciences CH-5093 Zurich (Switzerland) E-Mail zenobi-6-org chem.eth.ch

SESI - Aplikace

Respiration

Breath Analysis in I Spectrometry in Ch Pulmonary Disease

Pablo Martinez-Lozano Sinues^a Luka Mark Ivanov^d Noriane Sievi^b Giova Renato Zenobi^a

^aDepartment of Chemistry and Applied Biosciences, E and ^cZurich Center for Integrative Human Physiology, Problems of Chemical Physics, Russian Academy of Sc

Key Words

Breath test - Chronic obstructive pulmonary dis Exhaled biomarkers

Abstract

Background: It has been suggested that exi contains relevant information on health status We hypothesized that a novel mass spectromet nique to analyze breath in real time could be ferentiate breathprints from chronic obstructiv disease (COPD) patients and controls (smoke smokers). Methods: We studied 61 participants COPD patients [Global Initiative for Obstructi ease (GOLD) stages I-IV], 25 nonsmoking con smoking controls. We analyzed their breath t time. Raw mass spectra were then processed as ly analyzed. Results: A panel of discriminating r features was identified for COPD (all stages; n healthy nonsmokers (n = 25), COPD (all stages; r healthy smokers (n = 11) and mild COPD (GOL n = 13) versus severe COPD (GOLD stages III/I blind classification (i.e. leave-one-out cross vi sulted in 96% sensitivity and 72.7% specificit

KARGER E.Mail karger@karger.com www.karger.com/res 0 2014 S. Kanger A.G., Basel 0025-7931/14/0874-0301\$39.50/0

m/z	COPD subjects	Nonsmoking controls
79	63 (49-77)	102 (65-138)
102.1	134 (111-156)	191 (160-221)
118.0	120 (60-180)	217 (134-300)
143.1	931 (684-1,179)	1,218 (1,025-1,411)
157.1	664 (531-798)	844 (744-945)
158.1	557 (459-656)	723 (632-814)
160.1	214 (164-263)	335 (262-409)
174.1	338 (264-413)	391 (344-438)
180.1	541 (180-901)	623 (300-946)
185.1	493 (426-560)	580 (526-635)
185.9	62 (53-72)	77 (70-84)
186.2	496 (381-610)	956 (654-1,258)
188.1	284 (232-337)	357 (309-406)
190.1	301 (242-360)	393 (335-451)
202.2	268 (229-308)	416 (302-529)
227.1	722 (548-896)	509 (379-639)
240.2	152 (130-174)	216 (173-259)
245.2	228 (200-256)	193 (152-233)
247.2	386 (313-458)	320 (222-418)
258.1	161 (138-184)	203 (174-232)
265.1	129 (86-171)	114 (111-118)
268.2	95 (80-110)	119 (102-136)
271	110 (88-131)	78 (71–86)
271.3	912 (682-1,141)	614 (433-796)
277.1	160 (108-212)	107 (88-125)
287.3	218 (147-288)	125 (102-148)
327	419 (364-473)	484 (439-528)
328	54 (50-59)	62 (57–66)
329	416 (361-471)	477 (433-520)
329.3	111 (80-141)	77 (48-106)
330	60 (55-64)	67 (63-71)
331	148 (131-164)	165 (152-179)
332.2	71 (63-79)	95 (84-106)
344.1	270 (218-321)	362 (316-408)
345	58 (54-63)	67 (61-73)
346	256 (205-307)	359 (312-406)
348.1	103 (84-121)	134 (118-149)

The signal intensity values listed are means (95% confidence interval) in units of counts.

SESI – Aplikace

Respiration

Clin Respir DOI: 1

Breath Analysis in F Spectrometry in Ch Pulmonary Disease

Pablo Martinez-Lozano Sinues^a Luka Mark Ivanov^d Noriane Sievi^b Giova Renato Zenobi^a

^aDepartment of Chemistry and Applied Biosciences, E and ^cZurich Center for Integrative Human Physiology, Problems of Chemical Physics, Russian Academy of Sc

Key Words

Breath test - Chronic obstructive pulmonary dis Exhaled biomarkers

Abstract

Background: It has been suggested that ext contains relevant information on health status We hypothesized that a novel mass spectromet nique to analyze breath in real time could be ferentiate breathprints from chronic obstructiv disease (COPD) patients and controls (smoke smokers). Methods: We studied 61 participants COPD patients [Global Initiative for Obstructive ease (GOLD) stages I-IV], 25 nonsmoking con smoking controls. We analyzed their breath b time. Raw mass spectra were then processed ar ly analyzed. Results: A panel of discriminating n features was identified for COPD (all stages; n healthy nonsmokers (n = 25), COPD (all stages; r healthy smokers (n = 11) and mild COPD (GOL n = 13) versus severe COPD (GOLD stages III/I blind classification (i.e. leave-one-out cross vi sulted in 96% sensitivity and 72.7% specificit

KARGER E-Mail karger@karger.com www.karger.com/res 0 2014 S. Karger AG, Basel 0025-7931/14/0874-0301\$39:50/0

m/z	
79	
102.1	
118.0	
143.1	
157.1	
158.1	
160.1	
174.1	
180.1	
185.1	
185.9	
186.2	
188.1	
190.1	
202.2	
227.1	
240.2	
245.2	
247.2	
258.1	
265.1	
268.2	
271	
271.3	
277.1	
287.3	
327	
328	
329	
329.3	
330	
331	
332.2	
344.1	
345	
346	
348.1	

The cies	
The sign	14
interval) in	u

228.2

215 (181-250)

186 (36-335)

m/z	COPD subjects	Smoking controls	m/z	COPD subjects	Smoking controls
59	2,155 (1,644-2,666)	1,042 (752-1,332)	235.2	1,173 (949-1,397)	747 (173-1,321)
60.1	168 (136-200)	95 (78-111)	236.2	287 (218-355)	209 (70-348)
98	38 (27-50)	74 (36-112)	239.2	168 (142-194)	131 (109-153)
122	85 (70-99)	133 (105-160)	241.2	141 (123-158)	112 (79-145)
123.1	220 (98-342)	746 (219-1,274)	244.2	578 (461-695)	621 (-96 to 1,338)
124.1	86 (59-113)	191 (110-272)	247.2	386 (313-458)	287 (128-446)
126	71 (40-102)	223 (81-365)	249.2	279 (196-362)	189 (161-216)
146	132 (78-187)	335 (128-543)	251.2	186 (167-206)	150 (129-172)
150	111 (81-141)	241 (112-370)	253.1	138 (99-178)	106 (90-122)
155.1	1,280 (617-1,943)	468 (260-677)	255.1	258 (-17 to 532)	98 (89-107)
160.1	235 (164-306)	433 (252-614)	256.2	164 (78-250)	96 (69-122)
172.1	553 (411-695)	288 (102-475)	257.2	253 (-11 to 518)	84 (42-126)
182	68 (41-95)	186 (62-309)	258.1	161 (138-184)	121 (85-157)
189.1	195 (154-237)	132 (102-162)	267.2	172 (152-192)	129 (95-163)
191.1	366 (323-408)	271 (210-333)	269.2	104 (92-117)	76 (61-92)
194.1	105 (75-136)	181 (103-259)	271.3	912 (682-1,141)	357 (30-684)
195.2	1,856 (1,448-2,265)	1,065 (475-1,655)	272.3	265 (212-318)	146 (64-227)
198.1	167 (144-191)	115 (91-139)	273.2	96 (81-111)	66 (48-84)
199.1	435 (374-497)	282 (173-391)	276.2	131 (102-160)	246 (-121 to 612)
201.1	345 (284-407)	228 (179-278)	279.2	1,536 (1,310-1,762)	1,111 (839-1,384)
203.1	417 (326-509)	235 (118-352)	285.2	338 (53-623)	100 (57-143)
204.1	361 (302-421)	241 (132-351)	288.3	474 (363-586)	309 (69-550)
205.2	553 (158-948)	237 (137-338)	288.9	34 (28-39)	68 (43-93)
207.1	1,159 (924-1,394)	981 (19-1,943)	289.3	150 (121-179)	101 (43-159)
208.2	508 (394-621)	390 (35-745)	298.9	50 (40-60)	74 (51-97)
211.2	342 (288-395)	229 (166-293)	299.3	258 (136-381)	74 (48-101)
213.1	299 (244-354)	214 (166-263)	316.3	194 (100-289)	68 (32-103)
214	156 (132-181)	106 (70-142)	317.3	82 (59-105)	49 (37-62)
214.1	232 (195-270)	165 (123-208)	319.1	43 (34-53)	55 (42-68)
215.1	272 (236-308)	166 (111-221)	323.1	37 (30-44)	48 (36-59)
218.1	294 (243-345)	216 (135-298)	325.1	36 (28-45)	60 (38-82)
222.2	224 (181-266)	275 (-49 to 599)	329.3	111 (80-141)	45 (10-80)
223.1	1,390 (1,109-1,670)	954 (833-1,075)	330.3	65 (52-79)	34 (18-50)
224.1	317 (250-384)	242 (210-273)			

The signal intensity values are listed as means (95% confidence interval) in units of counts.

SESI - Aplikace

n			
Res	nr	\mathbf{m}	
. 100	\sim	~	

Clin

Breath Analysis in F Spectrometry in Ch **Pulmonary Disease**

Pablo Martinez-Lozano Sinuesa Luka Mark Ivanov^d Noriane Sievi^b Giova Renato Zenobia

^aDepartment of Chemistry and Applied Biosciences, E and ^cZurich Center for Integrative Human Physiology, Problems of Chemical Physics, Russian Academy of Sc

Key Words

Breath test - Chronic obstructive pulmonary dis **Exhaled biomarkers**

Abstract

Background: It has been suggested that ext contains relevant information on health status We hypothesized that a novel mass spectromet nique to analyze breath in real time could be ferentiate breathprints from chronic obstructiv disease (COPD) patients and controls (smoke smokers). Methods: We studied 61 participants COPD patients [Global Initiative for Obstructive ease (GOLD) stages I-IV], 25 nonsmoking con smoking controls. We analyzed their breath b time. Raw mass spectra were then processed ar ly analyzed. Results: A panel of discriminating n features was identified for COPD (all stages; n healthy nonsmokers (n = 25), COPD (all stages; r healthy smokers (n = 11) and mild COPD (GOL n = 13) versus severe COPD (GOLD stages III/I blind classification (i.e. leave-one-out cross vi sulted in 96% sensitivity and 72.7% specificit

KARGER E-Mail karger@karger.com www.karger.com/res 0 2014 S. Karger AG, Basel 0025, 7931/14/0874, 0301539 50/0

	_
m/z	
79	
102.1	
118.0	
143.1	
157.1	
158.1	
160.1	
174.1	
180.1	
185.1	
185.9	
186.2	
188.1	
190.1	
202.2	
227.1	
240.2	
245.2	
247.2	
258.1	
265.1	
268.2	
271	
271.3	
277.1	
287.3	
327 328	
329	
329.3	
330	
331	
332.2	
344.1	
345	
346	
348.1	
	_
The sign	a

	****	COLD Subjects	omorang controls
79	50	2155 (1744 2770)	1.042 (252 1.222)
102.1	59	2,155 (1,644-2,666)	1,042 (752-1,332)
118.0	60.1	168 (136-200)	95 (78–111)
143.1	98	38 (27-50)	74 (36–112)
157.1	122	85 (70-99)	133 (105-160)
158.1	123.1	220 (98-342)	746 (219-1,274)
160.1	124.1	86 (59-113)	191 (110-272)
174.1	126	71 (40-102)	223 (81-365)
180.1	146	132 (78-187)	335 (128-543)
185.1	150	111 (81-141)	241 (112-370)
185.9	155.1	1,280 (617-1,943)	468 (260-677)
186.2	160.1	235 (164-306)	433 (252-614)
188.1	172.1	553 (411-695)	288 (102-475)
190.1	182	68 (41-95)	186 (62-309)
202.2	189.1	195 (154-237)	132 (102-162)
227.1	191.1	366 (323-408)	271 (210-333)
240.2	194.1	105 (75-136)	181 (103-259)
245.2	195.2	1,856 (1,448-2,265)	1,065 (475-1,655)
247.2 258.1	198.1	167 (144-191)	115 (91-139)
265.1	199.1	435 (374-497)	282 (173-391)
268.2	201.1	345 (284-407)	228 (179-278)
271	203.1	417 (326-509)	235 (118-352)
271.3	204.1	361 (302-421)	241 (132-351)
277.1	205.2	553 (158-948)	237 (137-338)
287.3			
327	207.1	1,159 (924-1,394)	981 (19-1,943)
328	208.2	508 (394-621)	390 (35-745)
329	211.2	342 (288-395)	229 (166-293)
329.3	213.1	299 (244-354)	214 (166-263)
330	214	156 (132–181)	106 (70-142)
331	214.1	232 (195-270)	165 (123-208)
332.2	215.1	272 (236-308)	166 (111-221)
344.1	218.1	294 (243-345)	216 (135-298)
345	222.2	224 (181-266)	275 (-49 to 599)
346	223.1	1,390 (1,109-1,670)	954 (833-1,075)
348.1	224.1	317 (250-384)	242 (210-273)
	227.1	722 (548-896)	538 (-29 to 1,105)
The signal	228.2	215 (181-250)	186 (36-335)
interval) in ui			

COPD subjects

Smoking controls

	-,- (,
247.2	386 (313-458)
249.2	279 (196-362)
251.2	186 (167-206)
253.1	138 (99-178)
255.1	258 (-17 to 532)
256.2	164 (78-250)
257.2	253 (-11 to 518)
258.1	161 (138-184)
267.2	172 (152-192)
269.2	104 (92-117)
271.3	912 (682-1,141)
272.3	265 (212-318)
273.2	96 (81-111)
276.2	131 (102-160)
279.2	1,536 (1,310-1,762
285.2	338 (53-623)
288.3	474 (363-586)
288.9	34 (28-39)
289.3	150 (121-179)
298.9	50 (40-60)
299.3	258 (136-381)
316.3	194 (100-289)
317.3	82 (59-105)
319.1	43 (34-53)
323.1	37 (30-44)
325.1	36 (28-45)
329.3	111 (80-141)
330.3	65 (52-79)
The	signal intensity values
	l) in units of counts.

m/z

235.2

236.2

239.2

241.2

244.2

COPD subjects

1,173 (949-1,397)

287 (218-355)

168 (142-194)

141 (123-158)

578 (461-695)

Smoking controls

747 (173-1,321)

209 (70-348)

47 (31-06)

55 (42-68)

48 (36-59)

60 (38-82)

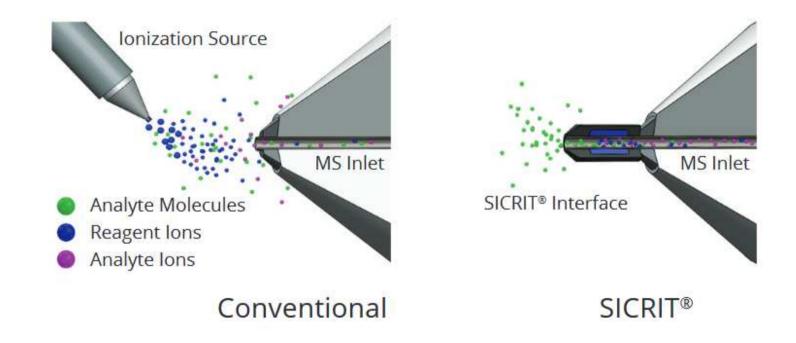
45 (10-80)

34 (18-50)

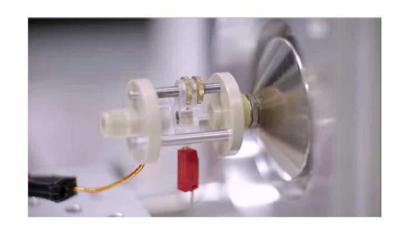
131 (109-153)

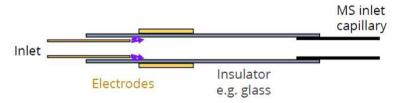
112 (79-145) 621 (-96 to 1,338) 287 (128-446) 189 (161-216) 150 (129-172) 106 (90-122) GOLD I/II GOLD III/IV m/z 165 277 (210-344) 210 (178-242) 286.3 70 (56-84) 228 (6-451) 63 (46-80) 358 (21-695) 302.3 55 (41-70) 308.2 53 (17-90) The signal intensity values listed are means (95% confidence

interval) in units of counts.

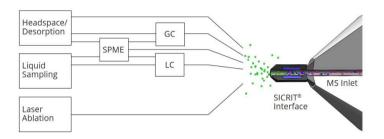

al intensity values are listed as means (95% confidence units of counts.

SICRIT® (Soft Ionization by Chemical Reaction in Transfer)





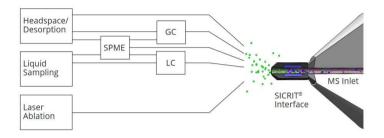
SICRIT® (Soft Ionization by Chemical Reaction in Transfer)



SICRIT® GC/SPME Module, Ion Source and Control Unit

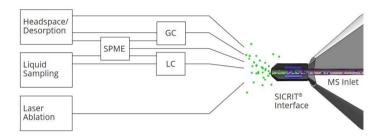
SICRIT® - Interface

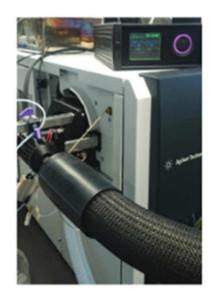
Desorpce

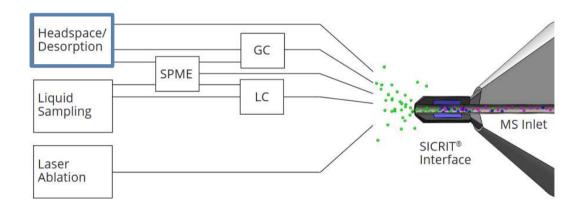


SICRIT® - Interface

Direct SPME



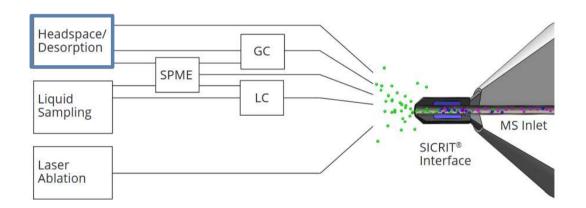

SICRIT® - Interface

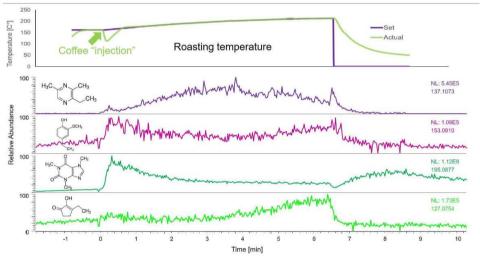

GC-MS

SICRIT® - Aplikace / Desorpce

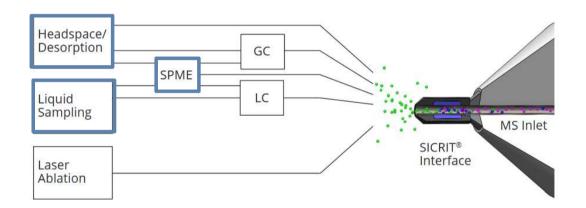

Heated (100°C) support gas Thermo LTQ Orbitrap MS

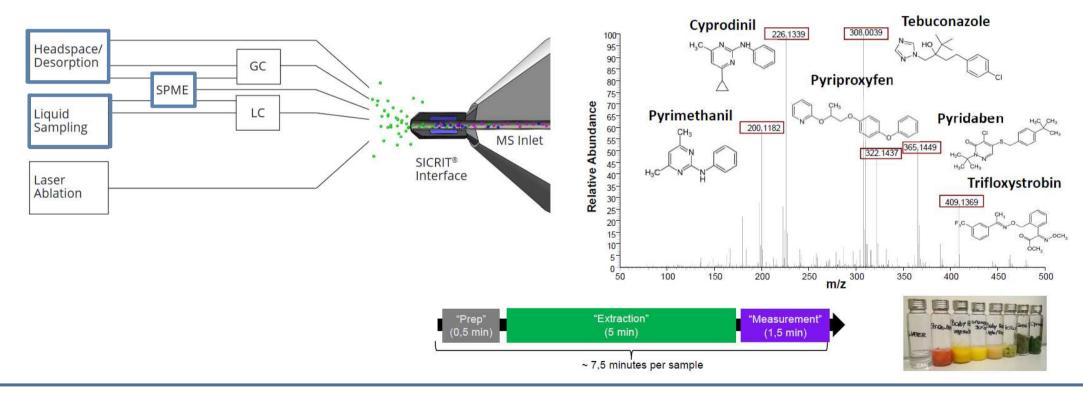
SICRIT® - Aplikace / Desorpce

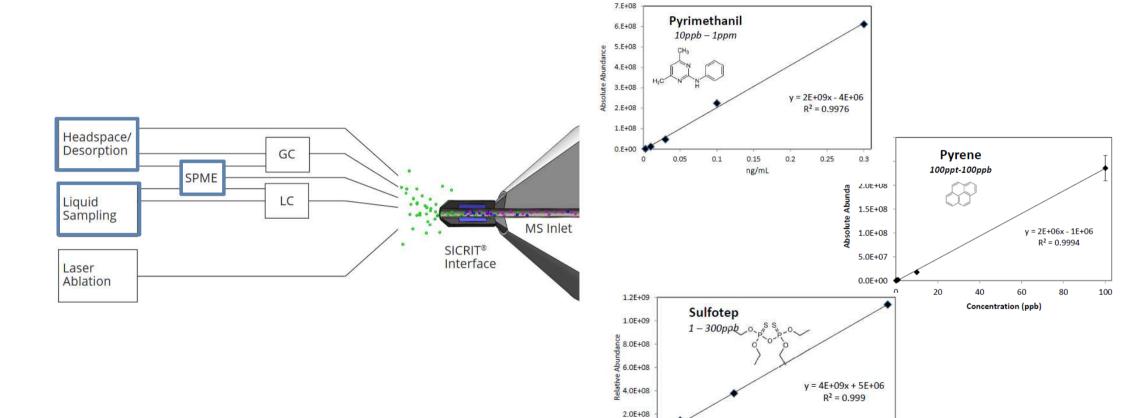

Flavour compound (excerpt)	Sum formula	M+H (calc)	M+H (meas)	Dev (mmu)
2-ethyl-3,5-dimethylpyrazine	C8H12N2	137,1073	137,1077	0,37
2,3-diethyl-5-methylpyrazine	C9H14N2	151,1230	151,1235	0,53
(E)-beta-damascenone	C13H18O	191,1430	191,1437	0,66
Guaiacol	C7H8O2	125,0597	125,0603	0,59
4-vinylguaiacol	C9H10O2	151,0754	151,0760	0,64
4-ethylguaiacol	C9H12O2	153,0910	153,0915	0,49
vanilin	C8H8O3	153,0546	153,0551	0,48
5-ethyl-3-hydroxy-4-methyl-2(5H)-furanone	C7H10O3	143,0703	143,0707	0,43
2-isobutyl-3-methoxypyrazine	C9H14N2O	167,1179	167,1184	0,51
propionic acid	C3H6O2	75,0441	75,0456	1,51
cresol	C7H8O	109,0648	109,0652	0,41
trigonelline	C7H7NO2	138,0550	138,0554	0,42
caffeine	C8H10N4O2	195,0877	195,0882	0,56
6-methyl-3-pyridinol	C6H7NO	110,0600	110,0604	0,35
3-hydroxypyridine	C5H5NO	96,0444	96,0446	0,20
2-methylpyrazine	C5H6N2	95,0604	95,0606	0,27
1-methylpyrrole	C5H7N	82,0651	82,0651	0,00
2,5-dimethyl-4-hydroxy-3(2H)-furanone	C6H8O3	129,0546	129,0550	0,40
furfural	C5H4O2	97,0284	97,0286	0,21
2-acetylfuran	C6H6O2	111,0441	111,0444	0,35
5-hydroxymethylfurfural	C6H6O3	127,0390	127,0394	0,41
4,4-dimethyl-2-cyclopenten-1-one	C7H10O	111,0804	111,0808	0,34
2,3-dimethyl-2-cyclopenten-1-one	C7H10O	111,0804	111,0808	0,34
2-hydroxy-3-methyl-2-cyclopenten-1-one	C6H8O2	113,0597	113,0601	0,35
3-ethyl-2-hydroxy-2-cyclopenten-1-one	C7H10O2	127,0754	127,0758	0,39
phenol	C6H6O	95,0491	95,0494	0,22



SICRIT® - Aplikace / Desorpce







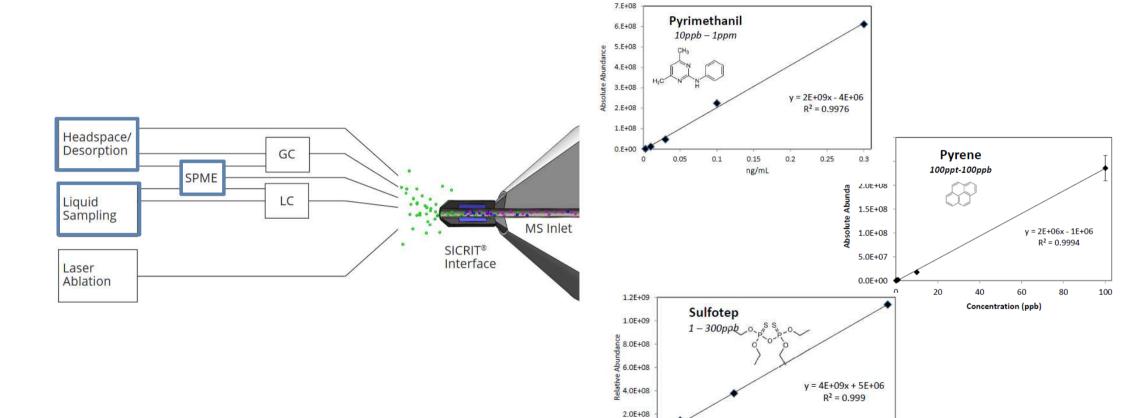
0.0E+00

0.05

0.1

0.15

ug/mL


0.2

0.25

0.3

0.0E+00

0.05

0.1

0.15

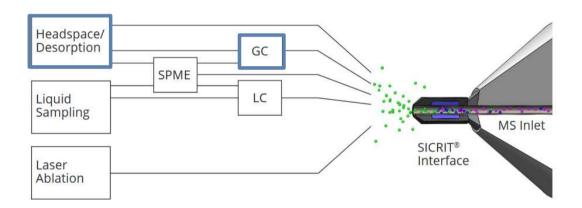
ug/mL

0.2


0.25

0.3

SICRIT® - Aplikace / GC-MS



SICRIT® - Aplikace / GC-MS

2,4-isobutylester

3-decen-2-one

Acetamiprid

Atrazine

Azoxystrobin

Beflubutamid

Chlorpyrifos

Chlorpyrifos-methyl

Deltamethrin

Demeton-S-methyl

Dichlobenil

Dieldrin

DMSA

EPN

Genite

Hexaconazole

Methamidhopos

Myclobutanil

Omethoate

Primiphos-ethyl

Primiphos-methyl

Pyrazpohos

Quinalphos

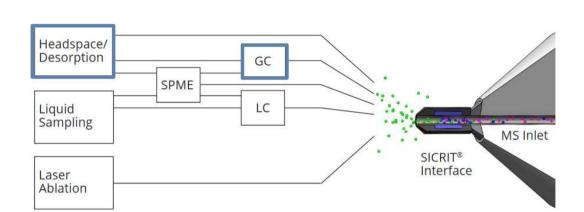
Simeconazole

Triadimefone

Vinclozolin

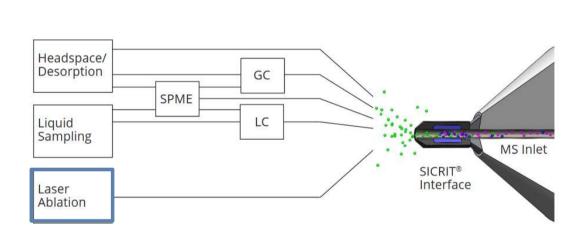
Dichlorvos

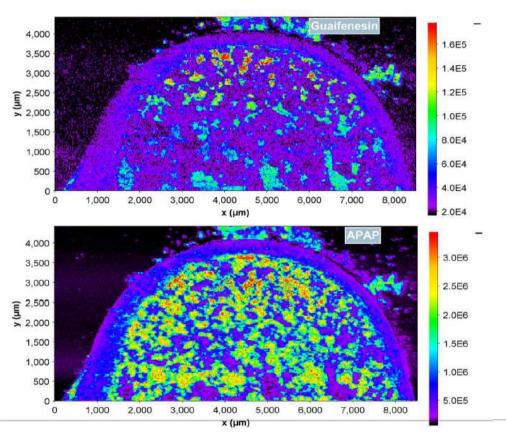
Difufenican


Flurprimidol

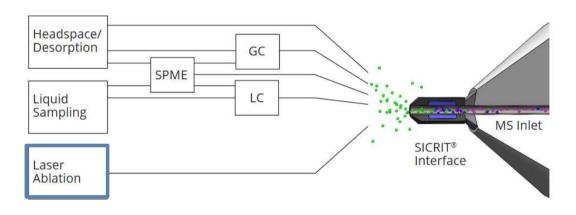
SICRIT® - Aplikace / GC-MS

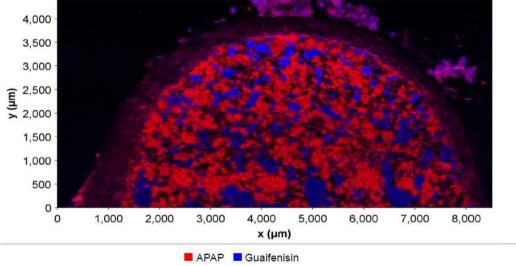
S/N hodnoty


Analyt	SICRIT-GC-MS	APGC-MS	
2,4-D-isobutylester 1	5	5.9	
3-decen-2-one 1	188.4	-	
Acetamiprid 1	314.5	2.9	
Atrazine 1	482.3	19.6	
Azoxystrobin 1	455.2	97.5	
Beflubutamid 1	2874.6	2.2	
Chlorpyrifos 1	719.5	9.5	
Chlorpyrifos-methyl 1	352.7	53.1	
Cypermethrin(sum) 1	205.6	41.9	
DDE-PP 1	25.9	43.4	
Deltamethrin 1	112.2	21.7	
Demeton-S-methyl 1	66.5	9.9	
Dichlobenil 1	46.3	28.9	
Dichlorvos 1	89.3	163.8	
Dieldrin 1	508.7	9.5	
Diflufenican 1	825.7	242.9	
DMSA 1	761.7	19.4	
EPN 1	422.2	32.9	
Flurprimidol 1	283.7	308.5	
Genite 1	16.8	48.1	
Hexaconazole 1	65.6	12.8	
Methamidophos 1	146.7	3558	
Myclobutanil 1	391.6	111.2	
Omethoate 1	703.1	31.2	
Pirimiphos-ethyl 1	570.2	16.5	
Pirimiphos-methyl 1	332.3	94.7	
Pyrazophos 1	729.8	66.9	
Quinalphos 1	172	12983.6	
Simeconazole 1	129.4	22361.8	
Triadimefon 1	257.1	7.9	
Vinclozolin 1	2.4	1.4	



SICRIT® - Aplikace / Laserová ablace





SICRIT® - Aplikace / Laserová ablace

Děkuji za pozornost

www.pragolab.cz

in linkedin.com/company/pragolab-s-r-o-bucek@pragolab.cz

