Sample Preparation?
Einige Zahlen

61% of time is spend for sample processing

30% of errors are coming from sample processing
Standard Addition
Serial Dilution
Standard Addition – Serial Dilution

General Steps:
1. Dilute
2. Vortex
3. Add STD
4. Vortex
5. Inject

Stock solution

(1:10)
1:50
1:100
1:200
1:1000

Fully automated standard addition method for the quantification of 29 polar pesticide metabolites in different water bodies using LC-MS/MS.
Dilution Workstation
Dilution Workstation

- Show the reproducibility and accuracy of automated dilutions with a PAL RTC
- Test is done on a 14 compound mixture
- Range of dilution
 - Stock solution at 4 mg/mL
 - Dilutions from 400 to 1 µg/mL (9 vials) in hexane

Many thanks to Philippe Mottay, Brechbühler AG, Schlieren, Switzerland
PAL Setup

• PAL RTC equipped with
 • 2 park stations
 • 2x 1000 µL syringe
 • 2x 100µL syringe
 • 2x 10µL syringe
 • Vortex mixer
 • Solvent module
 • Fast wash station
 • VT54 tray
 • VT15 tray
• Software PAL Sample Control
Verification of method with GC compatible compounds

- The method was tested with GC compatible compounds
- Mixture of 14 compounds at 4 mg/ml
- Range of dilutions
 - 400; 200; 100; 40; 20; 10; 4; 2; 1 µg/ml in Hexane
- Measured by GC/FID (Thermo Trace 1310)
- Method:
 - 40°C, 4 min to 260°C @15°C/min hold 1.5 min.
 - Split injection (20/1) at 260°C, column flow 2 ml/min
 - Detector at 270°C
Calibration results

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>R square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butyl acetate</td>
<td>0.9999</td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>0.9998</td>
</tr>
<tr>
<td>Ethyl valerate</td>
<td>0.9996</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>0.9996</td>
</tr>
<tr>
<td>Beta-pinene</td>
<td>0.9995</td>
</tr>
<tr>
<td>C10</td>
<td>0.9995</td>
</tr>
<tr>
<td>Limonene</td>
<td>0.9995</td>
</tr>
<tr>
<td>Linalool</td>
<td>0.9995</td>
</tr>
<tr>
<td>Benzyl acetate</td>
<td>0.9995</td>
</tr>
<tr>
<td>Menthol</td>
<td>0.9995</td>
</tr>
<tr>
<td>Citronellol</td>
<td>0.9995</td>
</tr>
<tr>
<td>Geraniol</td>
<td>0.9995</td>
</tr>
<tr>
<td>Coumarin</td>
<td>0.9997</td>
</tr>
<tr>
<td>Alpha Ionone</td>
<td>0.9995</td>
</tr>
</tbody>
</table>
Determination Fatty Acids as FAME by GC/MS

- Determination of fatty acid composition and content of foods
- Determination of Biodiesel composition
- Trans-esterification of fatty acids to FAME is a very common and at the same time tedious procedure.
- Automation increases productivity and prevents exposure of humans to hazardous chemicals.
Derivatisation Workflow FAME

Generation of Fatty Acid Methylesters (FAME) with 1 min. Transesterification for GC/MS analysis

According to Eidg. Untersuchungsmethode 269.1
5 Port Dilutor Module

- Addition of Methyl ester / Heptane / Citrate
- Wash steps through the dilutor
Conclusions:

- Fast and reliable derivatization
- Very good accuracy and precision
- Excellent separation of different FAMEs
- High productivity
- Traceability
Application Note(s) auf www.palsystem.com
Integrated Platform Including Bligh and Dyer Extraction and Dual-Column UHPLC-MS/MS Separations for Metabolomics Studies

Gérard Hopfgartner, Sandra Jahn and Emmanuel Varesio

Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences
EPGL, University of Lausanne, University of Geneva
30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland

CTC Sunday Workshop @ IMSC 2014
Sunday, August 24th 2014, Geneva, Switzerland
Identification of Endogenous Metabolites from *Chlamydomonas reinhardtii* Algae

b) Automated on-line sample preparation with RTC platform

Add 225 µL H₂O + 225 µL CHCl₃
Vortex for 10 s
Centrifuge for 5 min. (4000 rpm, ≈ 900 x g)

1) Aspirate 500 µL of upper fraction
 (H₂O-MeOH fraction)
 Dilution 5-fold by adding 60 µL to 240 µL of dilution solvent
 (= 10% MeOH in samples)
 Add chromatographic standards
 Alternately inject 25 µL on C₁₈ column
 (UHPLC system 1)

2) Aspirate 250 µL of lower fraction
 (CHCl₃ fraction)
 Evaporate to dryness with N₂ gas
 (0.35 bar, 35°C, 10 min.)
 Reconstitute in 150 µL MeOH
 Add chromatographic standards
 Inject 5 µL on C₈ column
 (UHPLC system 2)
UHPLC Conditions and Timings

UHPLC system 1
Aqueous fraction (AQ)

- Flow = 400 µl/min
- A) 5 mM NH₄Formate (pH 3.0)
- B) ACN + 0.1% FA
- C) 0.025% NH₄OH (pH 8.3)
- D) ACN + 0.0125% NH₄OH

UHPLC system 2
Organic fraction (ORG)

- Flow = 300 µl/min
- A) 5 mM NH₄Acetate (pH 4.2)
- B) ACN + 0.1% AA

UHPLC 1
(20 min runs)

- 100% AQ-pH8 (1)
- 0% AQ fractn dilution + STD addition

- Blank (1)

UHPLC 2
(30 min runs)

- 100% ORG fractn evap. & recon.

Sample 1 Bligh & Dyer fractions analysis (2 hours)

- AQ-pH8 (1) AQ fractn dilution + STD addition
- AQ-pH3 (1) AQ fractn dilution + STD addition
- Blank (1)
- ORG (1) ORG fractn evap. & recon.

Sample 2 Bligh & Dyer fractions analysis

- AQ-pH8 (2) AQ fractn dilution + STD addition
- AQ-pH3 (2) AQ fractn dilution + STD addition
- Blank (2)

• Robotic Tool Change (RTC) PAL system with several modules (CTC Analytics)
• Two quaternary LPG Nexera LC30AD UHPLC pumps (Shimadzu)
• TripleTOF 5600 mass spectrometer with CDS device (AB SCIEX)
Thak you very much!