FTIR SPECTROSCOPY

Determine concentrations with Paradigm workflows

TQ Analyst makes it EZ

One important application for FTIR spectroscopy is extracting valuable information about the amount of a particular component found in the sample. TQ Analyst EZ is included as part of the Thermo Scientific[™] OMNIC[™] Paradigm Software and provides an excellent way to create methods for obtaining quantitative measurements from the spectrum. This process can be as simple as a baseline-corrected peak area or as complex as a CLS multivariate quantitative analysis application that determines the concentrations of several components. To demonstrate the benefits of incorporating TQ Analyst EZ methods into a workflow, we will create a simple peak height analysis based on the N-H stretching band near 3300 cm⁻¹ measured on the Thermo Scientific[™] Nicolet[™] Summit FTIR Spectrometer configured with the Thermo Scientific[™] Everest Diamond ATR Accessory. The Everest ATR Accessory with rugged single bounce diamond crystal provides a fast way to measure the amount of additive in a plastic formulation even with rigid, irregular shaped samples.

While the peak height can be measured in OMNIC Paradigm as shown below, performing this calculation in TQ Analyst EZ has several benefits when creating a workflow. The first benefit of using TQ Analyst EZ is that once the method is created, it can be used with future workflows and is also compatible with legacy OMNIC systems. This compatibility greatly reduces the risk of getting different results on different instruments. It also means that many TQ methods developed for older systems can be used directly with the instruments running OMNIC Paradigm Software.

Figure 2. Measuring the N-H stretch peak height in an ATR spectrum

The figure below shows the TQ Analyst interface for creating a new method. In this example, we are using the N-H stretch peak at 3300 cm⁻¹. Assuming that Beer's law applies ($Abs = A^*B^*C$) and we know both the pathlength and the Absorptivity of this peak we can divide the measured peak height by the value to get the Concentration. In this example, we will use a Maximum Peak Height in Region with a two-point baseline to calculate the intensity of the peak.

TQ Analy	st - [New Method t View Diagno] stics Window Help									
Calibrate	Quantify	Explain Close Perform	nance Ir	ndex: N/A	Previous	: N/A		Uncalibrat	ed		
escription	Pathlength	Measurements Composite	Ts	opectra	Regio	Report		1			
Regions 1	Table Name	Region Type		Location	% or Ht	Baseline Type		Point 1	Point 2	Offset	1
Regions 1	Table Name PkHt 3300	Region Type Max height in range	•	Location 2,995.00	% or Ht	Baseline Type Two points	•	Point 1 3,374.00	Point 2 3,134.00	Offset]
Regions 1	Table Name PkHt 3300	Region Type Max height in range	<u>•</u>	Location 2,995.00 3,310.00	% or Ht	Baseline Type Two points Fixed location	- - -	Point 1 3,374.00	Point 2 3,134.00	Offset	

Figure 3. Creating a TQ Analyst EZ method to calculate the concentration from the peak heigth

A second benefit of using TQ Analyst EZ is the ability to create Composite Variables that can combine the values from several component measurements. Assuming the concentration is a linear function of absorbance, the Composite calculation is simple. In some cases, you may add a zero correction or even use a second-order Algebraic Formula.

🚺 TQ Analyst -	[New Method]									- 0
File Edit	View Diagnostics Window	/ Help								
Calibrate	Quantify Explain C	Close Per	formance Index: N/A P	revious: N/A		Calibrated				
Description	Pathlength Measureme	ents TCom	oosite Spectra	Regions	Report	1				
Composit or they n	te components may be algebraic nay be a function of one or more	or logical exp of the compor	ressions ients							
List of Consta	ants Extracted from Text File					Formula Elements				
Zn nth e	entry in TQInputZ.txt (n=1 to 999)			-		Na	ime		Label	
						PkHt 3300			A	
Available Ope	erators:									
+ Add				-						
Augilable Fue	otions									
				_						
INVO(A.B.) Average of arguments									
Formula Sepa	arators	Logical Op	erations							
. Decim	nal separator	0.00	Value assigned for FALS	BE						
, Item s	separator	1.00	Value assigned for TRU	E						
Composites T	able									
Index	Composite	Abbrev.	Algeb	raic Formula		Unit	Digits		Result	
V1	PPM	PPM	A*0.1234				2 (Compute and	i report	-
V2							2 (Compute and	d report	-
4										•

Figure 4. Using the Composite feature to scale the peak height by the absorptivity

The resulting workflow is automatically generated in the OMNIC Paradigm software. By clicking on the TQ Analyst tile, you can select the method and the spectrum you want to analyze. When the method is selected, the component names and other information are automatically displayed. In this example, the first component is the measured peak height and the second is the composite as calculated above.

🦹 OMN	IC Paradigm								
File	Acquire Data	View / Display	Process	Identify	Configure	Help			
Run	Export	Save Und	lo Redo	Dashboard	چ Spectra				
	- Va	ilPro Le	ock						
<u>~</u>	PkHt Exa	ample	Measure		TO An	alvst	Re	eport	
Measure			>- 24	-0	-	0	0-	-6	
Ê/		TQ Analyst Setti	ngs				o ×		
Instruction		Quantification method	ł	PkHt Example.c	Int	+	Browse		
		Analysis type	TQ Analyst Measure	ment Only meth	nod				
TQ Analyst		Results						•	•
Ó			Name Unit	Low Limit H	ligh Limit				
Search			PkHt 3300						
Ø			PPM						
Peak Analysi	s								
~		Select spectrum	Measure> Sample			`	/	•	
Report		Tile name	TQ Analy:	st		ОК	Cancel		

Figure 5. Adding the TQ method to a simple OMNIC Paradigm workflow

thermo scientific

Combining the flexibility and power of TQ Analyst EZ with the ease of OMNIC Paradigm workflow creation provides a simple way to develop an application that can be used to streamline analysis with the Nicolet Summit. For more sophisticated multi-variate analysis, TQ Analyst Professional Edition is also available.

Find out more at thermofisher.com/summit