pragolab

Hmotnostná spektrometria a jej úloha v metabolomike

Mariana Danková

METABOLOMICS

 komplexná analýza metabolomu v konkrétnom fyziologickom alebo vývojovom štádiu organizmu, tkaniva alebo bunky

 hladina metabolitov-metabolický "pool", nie je odpoveď iba génovej expresie, ale aj environmentálneho a vývojového stimulu alebo dôsledok genetickej mutácie

Wu RQ, J Dent Res. 2011

bludoll@p

METABOLOMICS

CHALLENGES FOR METABOLOMICS

Diversity in structures and physical chemical properties

- Require multiple technologies to capture a metabolome

Many isomeric and isobaric species

- Require high resolving power for correct ID

Very low to very high concentrations

- Require High sensitivity and wide dynamic range

No single database to identify all unknown metabolites

- Require extensive library or fragment ion prediction based on compound structure

budolep

HOW ACCURATE IS YOUR MASS?

• Mass accuracy

$$\Delta m / z = \frac{m_{meas} - m_{true}}{m_{true}} \cdot 10^6$$

• Quadrupole MS
$$\frac{\Delta}{1} = \frac{500.10 - 500.00}{500.00} \cdot 10 = 10$$

• HRMS (Orbitrap MS) $\frac{\Delta}{10} = \frac{500.10314 - 500.10214}{500.10214} \cdot 10 =$

budollep

ORBITRAP: THE PERFORMANCE LEADER SINCE 2006

ORBITRAP MASS ANALYZER

- Ions injected into the Orbitrap are trapped in an electrostatic field
- Each ion oscillates axially with a frequency that is proportional to its mass
- An image current of these oscillations is measured using a split outer electrode
- This image is then converted to a mass spectrum using Fourier transform
- The longer a signal (transient) is measured, the higher the resolution

ORBITRAP: THE PERFORMANCE LEADER SINCE 2006

ORBITRAP MASS ANALYZER

pragolab

Unmatched ultrahigh resolution, accurate mass performance

- What Orbitrap provides?

- Fundamental difference to other HRAM instruments
 Parameter measured is **frequency**, not time/voltage/etc
 Resolution for more accurate *m/z* determination
 Less prone to ambient conditions changes
 Stability within <1-2 ppm during several days
 No need for lock mass in "routine work"
 Small footprint
- Easy setup

• Which applications?

 accurate identification, structural analysis, and quantification of organic molecules, lipids, carbohydrates, peptides & proteins in complex mixtures

HIGH RESOLUTION IS FOR FINE ISOTOPIC PATTERN DETERMINATION & ISOTOPIC LABELING

SENSITIVITY

57,58 fg "on column" in real sample

Estradiol is a steroid, an estrogen, and the primary female sex hormone

budolep

EXPLORIS 240

Mass Range

Standard mass range *m/z* 40–6,000, up to *m/z* 8,000 with BioPharma option Orbitrap Mass Analyzer Resolution

Up to **240,000** at *m/z* 200

Scan Rate*

Up to **22 Hz** at resolution setting 15,000 at *m/z* 200

Mass Accuracy*

External calibration achieves <3 ppm RMS drift over 24 hours; Internal lock mass calibration achieves <1 ppm RMS drift over 24 hours; EASY-IC achieves <1 ppm RMS drift for at least 5 days

Sensitivity

MS/MS: 200 fg reserpine on column S/N 100:1 tSIM: 200 fg reserpine on column S/N 250:1

Dynamic Range

>5,000 within a single Orbitrap mass analyzer spectrum **Polarity Switching**

One Full Scan cycle^{**} <700 ms equals >1.4 Hz One tSIM Scan cycle^{**} <600 ms equals >1.6 Hz

Multiplexing

Up to 20 precursors per scan

EXPLORIS 120

Mass Range

Standard mass range *m/z* 40–3,000 Orbitrap mass analyzer Resolution Up to 120,000 at *m/z* 200 Scan Rate* Up to 22 Hz at resolution setting 15,000 at *m/z* 200 Mass Accuracy* External calibration achieves <3 ppm RMS drift over 24 hours; Internal lock mass calibration achieves <1 ppm RMS drift over 24 hours;

EASY-IC achieves <1 ppm RMS drift to at least 5 days

Sensitivity

MS/MS: 200 fg reserpine on column S/N 100:1 tSIM: 200 fg reserpine on column S/N 250:1

Dynamic Range

>5,000 within a single Orbitrap mass analyzer spectrum **Polarity Switching**

One Full Scan cycle** <700 ms equals >1.4 Hz

One tSIM Scan cycle** <600 ms equals >1.6 Hz

Multiplexing

Up to 2 precursors per scan for tMS2 and up to 20 compounds per scan for tSIM

budol@p

OptaMax NG

Electrospray Ion Source

MYCOTOXINS IN ANIMAL FEED

- Mycotoxins are toxic secondary metabolites produced by fungi that can grow on food products and crops
 - These toxins account for the annual loss of millions of dollars worldwide in human health, animal health, and condemned agricultural products
- Animal producers often test their feed in order to determine the level of mycotoxin contamination
 - Producers use this information to determine how much to dilute the contaminated feed in order to safely feed their production animals.
- The European Commission, US Food & Drug Administration and other regulations
 - Have set up guidelines for the maximum tolerance levels for mycotoxins in products intended for use as animal feed

Global guidance levels (ng/g) for mycotoxins in feed products intended for animal use

Mycotoxin	Canada	US	EU	China
Aflatoxin	20	20 - 300	5 - 20	10 – 50 (B1)
DON	1000 - 5000	5000 - 10000	900 - 12000	1000 - 5000
Fumonisin (total)		5000 - 100000	5000 - 60000	5000 - 60000 (B1+B2)
Ochratoxin A	200-2000		50 - 100	100000
Zearalenone	250-5000	1000-3000	100 - 3000	100 - 1500
T-2	1000			500
HT-2	25-100			

Note that the values above have a wide range because the tolerance of each mycotoxin varies widely with different animal species and stage of production.

TARGET COMPOUNDS

	Compound	Formula	Adduct	m/z	z	RT Time (min)
1	Aflatoxin B1	C17H12O6	+H	313.0707	1	7.07
2	Aflatoxin B2	C17H14O6	+H	315.0863	1	6.83
3	Aflatoxin G1	C17H12O7	+H	329.0656	1	6.53
4	Aflatoxin G2	C17H14O7	+H	331.0812	1	6.27
5	3-Acetyl DON	C17H22O7	+H	339.1438	1	5.5
6	Fumonisin B1	C34H59NO15	C34H59NO15 +H 722.3957		1	8.29
7	Fumonisin B2	C34H59NO14	+H	706.4008	1	9.17
8	Fumonisin B3	C34H59NO14	+H	706.4008	1	8.78
9	Ochratoxin A_M+H	C20H18CINO6	+H	404.0895	1	8.86
10	T-2_M+NH4	C24H34O9	+NH4	484.25 <mark>41</mark>	1	8.39
11	HT-2_M+NH4	C22H32O8	+NH4	442.2435	1	7.84
12	Zearalenone_M+H	C18H22O5	+H	319.154	1	8.95
13	Nivalenol_M+H	C15H20O7	+H	313.1282	1	2.63
14	Nivalenol_M+Na	C15H20O7	+Na	335.1101	1	2.63
15	DON_M+H	C15H20O6	+H	297.1333	1	3.59
16	Alpha-zearalenol_M-H	C18H24O5	-н	319.1551	1	8.86
17	HT-2_M+H	C22H32O8	+H	425.217	1	7.84
18	Zearalenone_M-H	C18H22O5	-H	317.1394	1	8.95

ORBITRAP EXPLORIS™ 120 MS ACQUISITION AND DATA PROCESSING WORKFLOW

ddMS²

Data Independent Acquisition (DIA)

- No target list
- Precursor isolation windows w/ stepped NCE
- MS2 triggered across entire peak

Data Dependent Acquisition (DDA)

- Target inclusion list with retention times
- Specific precursor isolation and NCE
- MS2 trigger on single apex scan

tMS²

Targeted MS2 (tMS2 or PRM)

- Target inclusion list with retention times
- Specific precursor isolation and NCE
- All fragments are collected in a full scan high resolution mass analysis

Screening and Quantitation

ree View Pane		n ×	Peak	View Pone			
Emand All	Collanse All		F	Compound Name	V Pesk Label V	Peak Workflow	4
b (\$)-Nic F 10-Dea F 10-Ace F 20-Met F Acento F Acento F Acento F Active F Atistics	otine celylbaccolm III byl deoxynivalenol byl spirolice C microcystin I B microcystin -LY ne mi B1 cin B1 cin B2	~	1 2 3 4 5 6 7	Afletesin B2 Afletesin B2 Afletesin B2 Afletesin B2 Afletesin B2 Afletesin B2 Afletesin B2	Th: 315.08651 ThCH: 315.08651 ThCB: 315.08651-> 287.0914 ThCB: 315.08651-> 287.0914 ThCB: 315.08651-> 315.08651- ThCB: 315.08651-> 207.0914 ThCB: 125.015.1-> 287.0914	TargetPeak Confirming Confirming Confirming Fragment Tragment Fragment	

Compound Data Base

- 3.545e-4 R*2 (1990); Digit Ignore, Vit 11C Avea

W X Calibration Conve

991M1

\$10000

40000 730000 1000000

250000 1500000

WS1-in0 Alabin-01 mb 329.055

63 64 65 66

m/s: 529.050 Apex 10: 653 : Left 10: 653 : Right 10: 658

P. P. P. W. P. P. P. P.

A) Fagneta

a #1-2410990

=3-216/0000

#1-101 DETA

0 M4 255025

Minimum #of teoriests Multi-reg #, 1491 RT 654

min 51 (TENINOT Source 41 Easter) with the

FLUM FFTMS + : FS in Full mc) 324 D85

200 30

11-Diamin (il 11

Reporting

MYCOTOXINS IN ANIMAL FEED- RESULTS

Comparison of extracted ion chromatograms for Aflatoxin B1 at 0.5 ng/ml (2 ng/g) in corn feed matrix extracted spikes (MES). Calibration range: 2 ng/g-100 ng/g.

EXAMPLE FRAGMENT MATCH AND LIBRARY SEARCH RESULT FROM DIA EXPERIMENT

Aflatoxin B1 at 0.5 ppb in corn feed

budolep

MYCOTOXINS IN ANIMAL FEED- RESULTS

		DIA			ddMS2			tMS2		
Compound	Adduct	r2	Recovery	% RSD	r2	Recovery	% RSD	r2	Recovery	% RSD
3-acetyl-deoxynivalenol	M+H	0.997	104.6 ± 4.0	11.7	0.997	106.5 ± 2.8	7.4	0.998	103.9 ± 1.3	10.2
Aflatoxin B1	M+H	0.998	90.9 ± 1.5	3.7	0.999	92.2 ± 0.9	3.3	0.998	92.1 ± 0.5	3.1
Aflatoxin B2	M+H	0.998	96.1 ± 2.4	2.9	0.999	96.0 ± 0.6	4.8	0.999	95.4 ± 1.3	3.9
Aflatoxin G1	M+H	0.998	95.2 ± 1.4	4.7	0.999	96.3 ± 0.9	2.1	0.998	95.1 ± 0.5	2.9
Aflatoxin G2	M+H	0.998	99.0 ± 1.8	4.8	0.999	100.7 ± 1.1	3.4	0.998	99.2 ± 0.9	4
α-Zearalenol	M-H	0.999	98.9 ± 1.3	11.3	0.999	101.8 ± 1.0	9.4	0.998	96.8 ± 1.5	9.1
Deoxynivalenol	M+H	0.996	98.2 ± 2.2	7.6	0.997	104.0 ± 1.0	7.9	0.993	99.5 ± 1.0	10.7
Fumonisin B1	M+H	0.998	112.1 ± 2.6	9.9	0.998	113.1 ± 1.2	4.8	0.998	108.5 ± 3.7	2.6
Fumonisin B2	M+H	0.997	116.3 ± 4.8	9.2	0.998	119.2 ± 3.9	7.1	0.998	112.6 ± 1.2	3.2
Fumonisin B3	M+H	0.999	107.8 ± 2.5	7.1	0.999	110.0 ± 1.4	9.5	0.997	107.2 ± 2.0	8
HT2-Toxin	M+NH4	0.997	114.8 ± 3.2	6	0.998	111.5 ± 1.0	9.7	0.997	109.6 ± 0.9	6.5
Nivalenol	M+H	0.999	98.8 ± 1.1	9.6	0.999	98.6 ± 0.9	9.2	0.996	97.5 ± 2.5	9
Ochratoxin A	M+H	0.997	88.6 ± 1.7	8.1	0.997	92.6 ± 2.5	7.7	0.999	90.8 ± 1.9	3.3
T2-Toxin	M+NH4	0.998	111.9 ± 2.3	4.6	0.999	115.3 ± 1.1	2.5	0.997	111.4 ± 0.8	3.1
Zearalenone	M-H	0.998	96.2 ± 0.4	2.2	0.999	99.6 ± 0.4	9.4	0.997	95.3 ± 1.5	8.6

Polarity, coefficient of determination for linear regression curves, and recovery (mean \pm SD, %) for mycotoxins spiked into control corn feed using three scan modes. Results show comparable calibration linearity (R2 > 0.990) and good spike recovery (80 – 120%) for all 15 mycotoxins in three acquisition modes with polarity switching. % RSD data represents matrix extracted spikes (MES) n = 5 replicates.

EXAMPLE FRAGMENT MATCH AND LIBRARY SEARCH RESULT FROM DIA EXPERIMENT

	Nominal concen	Mea	Measured concentration (ng/g)			
	(ng/g)	DIA	ddMS2	tMS2		
Aflatoxin B1	12.1 ± 2.6	12.3 ± 2.9	14.1 ± 2.8	13.3 ± 3.8		
DON	2200 ± 200	2258.2 ± 241.7	2333.7 ± 213.7	2156.3 ± 144.8		
Total fumonisins	10200 ± 1000	-	-	-		
HT-2	199.9 ± 21.9	230.7 ± 18.0	219.8 ± 24.1	236.5 ± 22.3		
Ochratoxin A	9.9 ± 1.9	12.9 ± 1.6	13.0 ± 1.3	12.9 ± 0.6		
T-2	254.0 ± 18.6	273.0 ± 32.2	291.3 ± 20.5	277.3 ± 20.1		
Zearalenone	347.4 ± 23.6	351.4 ± 15.5	367.4 ± 16.9	336 ± 38.3		

Nominal and measured concentrations (mean \pm SD, ng/g) of mycotoxins in certified reference material using three different scan modes.

Results for fumonisins were excluded due to very high concentrations in the samples which were significantly outside of the calibration ranges.

EXPLORE THE ORBITRAP FAMILY OF INSTRUMENTATI ON HTTPS://PLANETORBITRAP.COM/PRODUCTS

ĎAKUJEM ZA POZORNOSŤ

