# Ensuring analytical testing efficiency through modular gas chromatography

Authors: Daniela Cavagnino<sup>1</sup>, and Max Hadfield<sup>2</sup>

<sup>1</sup>Thermo Fisher Scientific, Italy; <sup>2</sup>Thermo Fisher Scientific, UK

Keywords: Gas Chromatography, TRACE 1600 Series Gas Chromatograph, Instant Connect Modules, GC injectors, GC detectors, GC modularity

# Scope

To highlight the modular design of the Thermo Scientific<sup>™</sup> TRACE<sup>™</sup> 1600 Series Gas Chromatograph (GC) and demonstrate the benefits offered to testing laboratories to increase their GC efficiency and productivity. Key benefits such as cost-saving and time-saving requirements will be covered with practical examples.

# The revolutionary concept of modularity

Since the introduction in 2012 of the Thermo Scientific<sup>™</sup> TRACE<sup>™</sup> 1300 Series Gas Chromatograph (GC), there has been a growing market recognition of its innovative and unique modular design. It is all about user experience which, over the years, provided a comprehensive picture of the benefits offered by a modularity concept for analytical testing laboratories.

Analytical instrument manufacturers are responding to customers' expectations for a faster, easier, more productive analytical experience. The TRACE 1600 Series



GC will continue to represent, through its modular design, a significant transformation to a more agile and smart approach to laboratory instrumentation.

The common design of a gas chromatograph, since the very first equipment introduced in the 1950s, is based on injectors and detectors bodies fully embedded in the top part of the GC mainframe to ensure optimal thermal insulation, connected to the pneumatic control in the back through dedicated plumbing for gas supply, and connected to the electronic boards through cables for temperature control and signal processing. Therefore, GC systems are typically factory-configured and any changes in configuration after the first installation, require expensive and time-consuming operations. This design, despite the fact it is in use for decades, may limit users in their analytical tasks. For example, maintenance procedures, as well as troubleshooting operations, can be time consuming and a service call is often required to operate



on the instrument for cleaning procedures or for parts replacement. Also, having GC instruments in the laboratory in fixed configurations, could prevent different analytical needs from being fulfilled in a short time. Additionally, laboratories which anticipate different analytical requirements in the future, may feel forced to invest more at the beginning in a fully-equipped system, to avoid the burden of upgrades in the future.

The TRACE 1600 Series GC continues the innovation legacy of the TRACE 1300 Series system by offering to the modern laboratories a design which embeds the injector and detector body, pneumatic control and electronic control board into handy modules, known as Instant Connect (iC) injector and detector modules. This design makes injectors and detectors available as tubing-free and cable-free independent sub-units of the instruments.



Figure 1. Plug and play concept for iC injector and detector modules

The iC injector and detector modules can be easily inserted in the dedicated slots on the top of the GC, thanks to a **plug-and-play concept** (Figure 1), permitting configuration changes in less than two minutes, with no need for expertise or special tools. To simplify this operation and get the system up and running immediately, every module is delivered tested and calibrated, so no additional setup is required after installation.

A wide range of iC modules are available to meet different application needs, including Split/Splitless (SSL) and Programmable Temperature Vaporizing (PTV) injectors, both in the standard and backflush configuration, Cold On Column (COC) injector, Gas Sampling Valve (GSV) with optional backflush and all standard GC detectors: Flame Ionization Detector (FID), Electron Capture Detector (ECD), Thermal Conductivity Detector (TCD), Nitrogen Phosphorous Detector (NPD), Flame Photoionization Detector (FPD) and Pulse Discharge Ionization Detector (PDD).

# Performance consistency from module to module

Each module is identified by a serial number for easy tracking in the laboratory and can be qualified as a separate item, so to be safely interchanged on a GC instrument maintaining compliance with internal quality protocols.

All injector and detector modules incorporate a new generation of miniaturized gas controls. These integrated electronic devices ensure precise control of the inlet pressure and flow throughout the column, further contributing to the excellent repeatability and reproducibility of retention times. As indicated in Table 1, the standard

# Table 1. Hydrocarbons retention time standard deviation in the range of 1/1000 minute

| Run       | n-C10  | n-C12  | n-C14  | n-C16  | n-C18  | n-C20  | n-C22  | n-C24  | n-C26  | n-C28  | n-C30  | n-C32  | n-C34  | n-C36  | n-C38  | n-C40  |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1         | 2.562  | 3.935  | 5.253  | 6.445  | 7.525  | 8.506  | 9.408  | 10.237 | 11.005 | 11.717 | 12.385 | 13.010 | 13.598 | 14.153 | 14.680 | 15.190 |
| 2         | 2.562  | 3.933  | 5.252  | 6.445  | 7.525  | 8.508  | 9.408  | 10.237 | 11.005 | 11.718 | 12.385 | 13.010 | 13.598 | 14.153 | 14.678 | 15.188 |
| 3         | 2.562  | 3.933  | 5.252  | 6.445  | 7.523  | 8.505  | 9.407  | 10.233 | 11.003 | 11.715 | 12.383 | 13.007 | 13.597 | 14.152 | 14.680 | 15.189 |
| 4         | 2.562  | 3.935  | 5.253  | 6.445  | 7.525  | 8.508  | 9.408  | 10.237 | 11.005 | 11.718 | 12.385 | 13.008 | 13.598 | 14.152 | 14.678 | 15.188 |
| 5         | 2.562  | 3.933  | 5.252  | 6.445  | 7.525  | 8.508  | 9.408  | 10.237 | 11.003 | 11.717 | 12.385 | 13.010 | 13.600 | 14.154 | 14.678 | 15.191 |
| 6         | 2.562  | 3.933  | 5.252  | 6.445  | 7.525  | 8.508  | 9.408  | 10.237 | 11.005 | 11.717 | 12.385 | 13.010 | 13.598 | 14.153 | 14.680 | 15.189 |
| 7         | 2.562  | 3.933  | 5.252  | 6.447  | 7.525  | 8.507  | 9.407  | 10.237 | 11.003 | 11.718 | 12.385 | 13.008 | 13.597 | 14.153 | 14.681 | 15.190 |
| 8         | 2.562  | 3.933  | 5.252  | 6.445  | 7.525  | 8.507  | 9.408  | 10.235 | 11.003 | 11.717 | 12.385 | 13.008 | 13.598 | 14.150 | 14.680 | 15.190 |
| 9         | 2.560  | 3.932  | 5.250  | 6.443  | 7.523  | 8.506  | 9.408  | 10.235 | 11.002 | 11.717 | 12.385 | 13.008 | 13.597 | 14.153 | 14.682 | 15.191 |
| 10        | 2.562  | 3.933  | 5.252  | 6.445  | 7.525  | 8.508  | 9.408  | 10.237 | 11.005 | 11.718 | 12.385 | 13.010 | 13.597 | 14.152 | 14.682 | 15.188 |
| Avg (min) | 2.562  | 3.934  | 5.252  | 6.445  | 7.525  | 8.507  | 9.408  | 10.236 | 11.004 | 11.717 | 12.385 | 13.009 | 13.598 | 14.153 | 14.680 | 15.190 |
| SD        | 0.0005 | 0.0009 | 0.0009 | 0.0008 | 0.0007 | 0.0012 | 0.0007 | 0.0012 | 0.0012 | 0.0011 | 0.0005 | 0.0012 | 0.0011 | 0.0012 | 0.0013 | 0.0010 |
| RSD %     | 0.02%  | 0.02%  | 0.02%  | 0.01%  | 0.01%  | 0.01%  | 0.007% | 0.01%  | 0.01%  | 0.01%  | 0.004% | 0.01%  | 0.01%  | 0.01%  | 0.01%  | 0.01%  |

deviation of the retention times for a hydrocarbons mixture from n-C10 to n-C40 is below a thousandth of a minute. This level of repeatability is a clear indication of the accurate temperature profile and column flow maintained during the GC oven temperature ramp, with highly precise thermal regulation.

In addition to the performance of a single injector/detector module, the modularity concept requires analytical reproducibility and accuracy between modules of the same type to ensure consistency of the results after swapping.

The replacement of a module requires cooling and powering down the instrument, disconnecting the column from the module, removing the module and plugging in the new one, re-connecting the column, and powering up the GC again. The electronic gas control permits an automated leak check to guarantee no artifacts are introduced by this manual operation. All the above steps are achieved very easily in few minutes. The Thermo Scientific<sup>™</sup> iConnect Column Lock (Figure 2) facilitates the column connection and disconnection in seconds, safely and with no tools required. The reduced thermal mass design of the TRACE 1600 GC allows a quick recovery of injection-ready conditions after instrument power-up allowing to resume analytical injections in only nine minutes. A good practice is to run a quick blank GC cycle before injecting samples again to ensure the entire flow path is not affected by air introduced during module replacement.

Tables 2 and 3 show the module-to-module reproducibility in terms of peak areas and retention times over 10 repetitions before and after the replacement of an iC SSL injector and an iC FID detector.

Variations in peak areas of a hydrocarbons mixture, measured as a delta of the average counts, are in the range of a few percentages when changing either the SSL injector or the FID detector. Such a variation, for most applications, is well below the required limit of a system suitability check, eliminating the need to recalibrate the GC system. The retention time variations are in the range of a few hundredths of a minute or even less, with no impact on components identification.





Figure 2. iConnect Column Lock allows quick, easy and safe column installation

#### Table 2. Variation in peak area as effect of module swap. All variations are in the range of few % changing either the inlet or the detector

| Starting instru | Starting instrument configuration: SSL s/n 712100036 and FID s/n 712300088 |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|-----------------|----------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                 | n-C10                                                                      | n-C12   | n-C14   | n-C16   | n-C18   | n-C20   | n-C22   | n-C24   | n-C26   | n-C28   | n-C30   | n-C32   | n-C34   | n-C36   | n-C38   | n-C40   |
| Avg (counts)    | 2620726                                                                    | 2666702 | 2615432 | 2636561 | 2573604 | 2588848 | 2574011 | 2569231 | 2549064 | 2564570 | 2637520 | 2631510 | 2559913 | 2593130 | 2492829 | 2552320 |
| SD              | 12355                                                                      | 10941   | 11571   | 11889   | 12894   | 12092   | 15913   | 14767   | 15078   | 15223   | 14298   | 13319   | 11161   | 13430   | 12358   | 13908   |
| RSD %           | 0.47%                                                                      | 0.41%   | 0.44%   | 0.45%   | 0.50%   | 0.47%   | 0.62%   | 0.57%   | 0.59%   | 0.59%   | 0.54%   | 0.51%   | 0.44%   | 0.52%   | 0.50%   | 0.54%   |
| Replacement o   | Replacement of SSL module                                                  |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Avg (counts)    | 2705439                                                                    | 2722254 | 2654680 | 2680682 | 2615418 | 2647035 | 2626550 | 2624551 | 2604909 | 2618663 | 2699958 | 2707570 | 2658013 | 2713142 | 2598635 | 2604178 |
| SD              | 8276                                                                       | 7559    | 8759    | 9119    | 11059   | 11146   | 12635   | 14822   | 13711   | 16916   | 16529   | 17096   | 12977   | 10030   | 12448   | 10215   |
| RSD %           | 0.31%                                                                      | 0.28%   | 0.33%   | 0.34%   | 0.42%   | 0.42%   | 0.48%   | 0.56%   | 0.53%   | 0.65%   | 0.61%   | 0.63%   | 0.49%   | 0.37%   | 0.48%   | 0.39%   |
| Variation %     | -3.2%                                                                      | -2.1%   | -1.5%   | -1.7%   | -1.6%   | -2.2%   | -2.0%   | -2.2%   | -2.2%   | -2.4%   | -2.4%   | -2.9%   | -3.8%   | -4.6%   | -4.2%   | -2.0%   |
| Replacement     | of FID mo                                                                  | dule    |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Avg (counts)    | 2752208                                                                    | 2777431 | 2705697 | 2728377 | 2668020 | 2699389 | 2678126 | 2670723 | 2649792 | 2665081 | 2745907 | 2757795 | 2703327 | 2763143 | 2653118 | 2666225 |
| SD              | 13455                                                                      | 15147   | 15120   | 11600   | 15162   | 14201   | 15885   | 15954   | 14781   | 15601   | 11514   | 14864   | 10635   | 13223   | 15755   | 11218   |
| RSD %           | 0.49%                                                                      | 0.55%   | 0.56%   | 0.43%   | 0.57%   | 0.53%   | 0.59%   | 0.60%   | 0.56%   | 0.59%   | 0.42%   | 0.54%   | 0.39%   | 0.48%   | 0.59%   | 0.42%   |
| Variation %     | -1.7%                                                                      | -2.0%   | -1.9%   | -1.8%   | -2.0%   | -2.0%   | -2.0%   | -1.8%   | -1.7%   | -1.8%   | -1.7%   | -1.9%   | -1.7%   | -1.8%   | -2.1%   | -2.4%   |

Table 3. Variation in retention time as effect of module swap. All variations are in the range of 1/100 of a minute or less, changing either the inlet or the detector

| Starting instru | Starting instrument configuration: SSL s/n 712100036 and FID s/n 712300088 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|-----------------|----------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                 | n-C10                                                                      | n-C12  | n-C14  | n-C16  | n-C18  | n-C20  | n-C22  | n-C24  | n-C26  | n-C28  | n-C30  | n-C32  | n-C34  | n-C36  | n-C38  | n-C40  |
| Avg (min)       | 2.562                                                                      | 3.934  | 5.252  | 6.445  | 7.525  | 8.507  | 9.408  | 10.236 | 11.004 | 11.717 | 12.385 | 13.009 | 13.598 | 14.153 | 14.680 | 15.190 |
| SD              | 0.0005                                                                     | 0.0009 | 0.0009 | 0.0008 | 0.0007 | 0.0012 | 0.0007 | 0.0012 | 0.0012 | 0.0011 | 0.0005 | 0.0012 | 0.0011 | 0.0012 | 0.0013 | 0.0010 |
| RSD %           | 0.02%                                                                      | 0.02%  | 0.02%  | 0.01%  | 0.01%  | 0.01%  | 0.007% | 0.01%  | 0.01%  | 0.01%  | 0.004% | 0.01%  | 0.01%  | 0.01%  | 0.01%  | 0.01%  |
| Replacement of  | Replacement of SSL module                                                  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Avg (min)       | 2.566                                                                      | 3.938  | 5.255  | 6.448  | 7.527  | 8.509  | 9.410  | 10.238 | 11.005 | 11.719 | 12.386 | 13.011 | 13.599 | 14.154 | 14.679 | 15.188 |
| SD              | 0.0006                                                                     | 0.0012 | 0.0007 | 0.0004 | 0.0009 | 0.0007 | 0.0007 | 0.0014 | 0.0007 | 0.0015 | 0.0009 | 0.0015 | 0.0009 | 0.0014 | 0.0015 | 0.0014 |
| RSD %           | 0.02%                                                                      | 0.03%  | 0.01%  | 0.006% | 0.01%  | 0.01%  | 0.007% | 0.01%  | 0.006% | 0.01%  | 0.007% | 0.01%  | 0.007% | 0.01%  | 0.01%  | 0.01%  |
| Variation %     | -0.2%                                                                      | -0.1%  | -0.1%  | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |
| Replacement of  | of FID mod                                                                 | lule   |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Avg (min)       | 2.563                                                                      | 3.935  | 5.254  | 6.446  | 7.525  | 8.508  | 9.408  | 10.237 | 11.004 | 11.718 | 12.384 | 13.011 | 13.598 | 14.154 | 14.679 | 15.186 |
| SD              | 0.0007                                                                     | 0.0007 | 0.0010 | 0.0007 | 0.0014 | 0.0008 | 0.0009 | 0.0014 | 0.0010 | 0.0009 | 0.0009 | 0.0010 | 0.0018 | 0.0007 | 0.0014 | 0.0019 |
| RSD %           | 0.03%                                                                      | 0.02%  | 0.02%  | 0.01%  | 0.02%  | 0.01%  | 0.01%  | 0.01%  | 0.01%  | 0.008% | 0.007% | 0.01%  | 0.01%  | 0.005% | 0.01%  | 0.01%  |
| Variation %     | 0.1%                                                                       | 0.1%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |

# Robust analytical performance

The operation of connecting and disconnecting a module is robust, even after hundreds of replacement cycles, producing consistent results. No GC experience is required to swap a module.

Module robustness was tested mechanically by having ten different operators with different GC expertise repeatedly insert and remove an SSL injector module. The sequence applied by each operator included powering off the GC, removing the module, inserting the module, and powering up the GC until it reached ready condition. Each operator repeated this cycle ten times. After each cycle, the column was re-connected to the SSL injector and FID detector, followed by a double blank run. Ten automated injections of the hydrocarbons mixture completed the test.

Tables 4 and 5 show the negligible variation of absolute peak areas (< 1.08%) and retention time (< 0.04%) for the hydrocarbons mixture before and after replacing the SSL module 100 times.

#### Table 4. Variation in peak area before and after 100 times module replacement cycle

|                          | n-C10   | n-C12   | n-C14   | n-C16   | n-C18   | n-C20   | n-C22   | n-C24   | n-C26   | n-C28   | n-C30   | n-C32   | n-C34   | n-C36   | n-C38   | n-C40   |
|--------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Run 9<br>before<br>swap  | 2754987 | 2779540 | 2709468 | 2720590 | 2662466 | 2694642 | 2671418 | 2666034 | 2640542 | 2660383 | 2748956 | 2756412 | 2705301 | 2768808 | 2658421 | 2670870 |
| Run 10<br>before<br>swap | 2751265 | 2775027 | 2708032 | 2732281 | 2677453 | 2705799 | 2688053 | 2684329 | 2667261 | 2684684 | 2755387 | 2771243 | 2709754 | 2772642 | 2651536 | 2665536 |
| Run 1<br>after<br>swap   | 2767372 | 2791927 | 2719553 | 2738439 | 2664499 | 2693367 | 2672357 | 2657758 | 2643338 | 2655810 | 2738028 | 2745997 | 2704789 | 2768416 | 2664390 | 2670998 |
| Run 2<br>after<br>swap   | 2756768 | 2787601 | 2711585 | 2738364 | 2687682 | 2720242 | 2699762 | 2690563 | 2663741 | 2677520 | 2756966 | 2774421 | 2711745 | 2765971 | 2664631 | 2676359 |
| Variation                | -0.59%  | -0.61%  | -0.43%  | -0.23%  | 0.48%   | 0.46%   | 0.58%   | 0.99%   | 0.90%   | 1.08%   | 0.63%   | 0.91%   | 0.18%   | 0.15%   | -0.48%  | -020%   |

Table 5. Variation in retention time before and after 100 times module replacement cycle

|                          | n-C10  | n-C12  | n-C14 | n-C16  | n-C18  | n-C20 | n-C22  | n-C24  | n-C26  | n-C28  | n-C30  | n-C32  | n-C34  | n-C36  | n-C38  | n-C40  |
|--------------------------|--------|--------|-------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Run 9<br>before<br>swap  | 2.562  | 3.935  | 5.253 | 6.447  | 7.525  | 8.507 | 9.408  | 10.235 | 11.003 | 11.717 | 12.383 | 13.010 | 13.598 | 14.153 | 14.678 | 15.185 |
| Run 10<br>before<br>swap | 2.563  | 3.933  | 5.255 | 6.445  | 7.523  | 8.508 | 9.407  | 10.237 | 11.005 | 11.717 | 12.383 | 13.012 | 13.595 | 14.154 | 14.677 | 15.185 |
| Run 1<br>after<br>swap   | 2.563  | 3.935  | 5.253 | 6.447  | 7.525  | 8.507 | 9.408  | 10.238 | 11.003 | 11.718 | 12.385 | 13.010 | 13.598 | 14.153 | 14.678 | 15.183 |
| Run 2<br>after<br>swap   | 2.563  | 3.935  | 5.253 | 6.447  | 7.523  | 8.508 | 9.407  | 10.237 | 11.003 | 11.718 | 12.385 | 13.012 | 13.600 | 14.155 | 14.680 | 15.187 |
| Variation                | -0.03% | -0.04% | 0.04% | -0.03% | -0.02% | 0.01% | -0.02% | -0.02% | 0.02%  | -0.01% | -0.01% | 0.02%  | -0.02% | 0.00%  | -0.01% | 0.01%  |

# Laboratory efficiency through modularity

Modular architecture can fundamentally transform the way laboratory technicians and managers use analytical technology, unlocking new saving opportunities while addressing both technical and business needs. Having the capability to easily and quickly install and uninstall injectors and detectors and having spare iC modules on hand for fast replacement, can eliminate the need for maintaining a duplicate GC back-up instrument, which optimizes valuable bench space and reduces cost of operation.

Alternative approaches with off-line maintenance and cleaning procedures are possible, keeping the GC system up and running and minimizing instrument downtime. The module replacement is so fast, simple and secure that it does not require service support, resulting in a significant time and cost saving. Figure 3 is showing an example of minimized downtime and cost saving during a problemsolving workflow due to Electronic Pressure Control (EPC) contamination.

On a conventional GC, if a problem with an injector is identified, performing maintenance is the first step and deeper cleaning can take several hours. In some cases, this may not solve the issue, requiring a service call with additional time and cost.

With a TRACE 1600 Series GC, replacement of the injector module and the ability to perform all maintenance procedures off-line (deep cleaning, consumables replacement and conditioning), limits the intervention to less than a half hour.

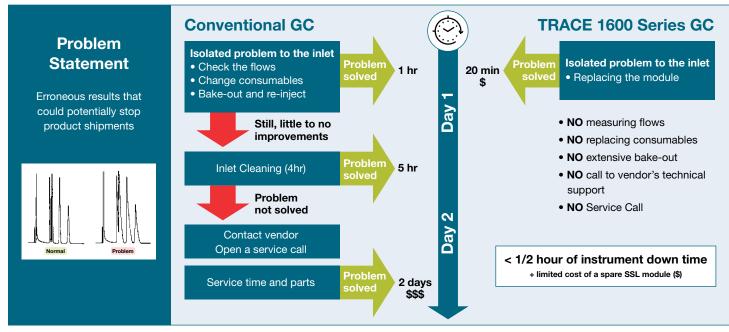
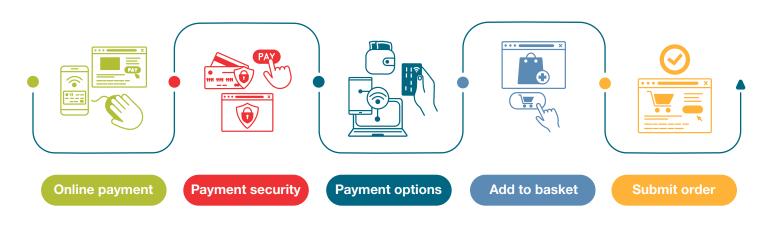



Figure 3. Example of downtime and cost saving with the modular TRACE 1600 Series GC


Modularity drives online purchase and service delivery

Analytical testing laboratories need to deliver quality results on time, every time. Often, in a situation where a laboratory needs to quickly recover a correct analytical response, the module replacement may restore the instrument running condition in less than 30 minutes, including cooling and powering down the instrument and powering up the GC again. The same operation on a conventional GC design would require a service call and a working day of instrument downtime. In fact, when a spare module is available, time-consuming troubleshooting actions are skipped and service calls avoided, reducing instrument downtime to minutes. Modularity offers additional benefits in terms of procurement. If spare modules are not readily available in the laboratory, online purchasing\* of modules and other consumables with guaranteed delivery in 24 hours is possible through thermofisher.com/tracegc. In addition to fast delivery, users can track orders, access stock information and receive online technical support.

# Modularity enables flexibility

In many cases as for start-up and academic laboratories, investments need to be prioritized by purchasing capital equipment that fits for the needs of the analyses without overspending on budget. A very common situation

\*For eCommerce eligible Countries contact your local sales representative



# thermo scientific

is that while short term requirements are clear, future requirements remain unclear, and the same GC might be needed in the future for different applications. Therefore, it is challenging to make the best choice for addressing evolving analytical needs with an initial investment. With a conventional GC, saving money today may lead to higher costs in the future. Modularity offers the opportunity to invest based on current requirements but leaving the ability to change configuration for different analytical needs or scale up for increased workload without expensive instrument upgrades or additional instrument purchase which is more costly and often challenging when laboratory space is limited.



Figure 4. Flexibility to share modules within different GC systems

# Flexibility drives quicker return on investment

The innovative modular concept of unlimited GC configurations and the ability to share modules on any Thermo Scientific TRACE 1300 and 1600 Series GC (Figure 4), multiplies the analytical possibilities. With the increased flexibility gained from modularity, an instrument no longer needs to remain idle because it's not configured to run particular sample types. More efficient use of your laboratory instruments accelerates the return on investment.

# Conclusion

The TRACE 1300 and 1600 Series GC offers unique advantages over GC instrumentation with a conventional design, helping laboratories to maximize operational efficiency and optimize costs and investments.

Thanks to the modular design, the TRACE GC instrument's configuration can be easily adapted with handy iC injector and detector modules, which incorporate all mechanical and electronic components with calibration information. Readily available through online purchasing and 1-day delivery, iC modules allow the analyst to rapidly swap injectors or detectors, without any service assistance, when needed.

The results described in this product spotlight demonstrate outstanding module-to-module reproducibility within 5% of the variances in absolute peak area and consistent retention times. The robust design enables the modules to be replaced without impacting instrument or method performance, even after hundreds replacements.

The modular design unlocks several time and cost savings opportunities through off-line maintenance capabilities, simplified troubleshooting and the flexibility to quickly adapt the GC to different analytical needs in a cost effective way, all supporting the increase of a laboratory's productivity.

# Find out more at thermofisher.com/tracegc

©2021 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. **SP74147-EN 0721S** 

