

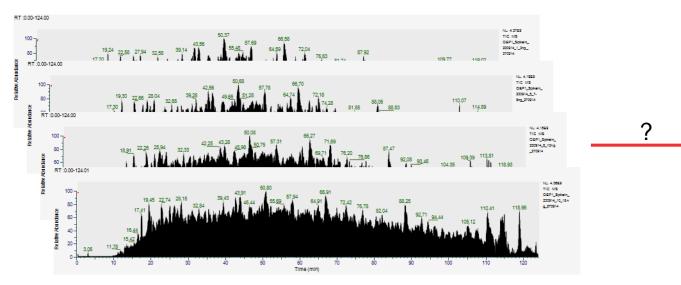
### **ThermoFisher** SCIENTIFIC

**Proteome Discoverer 2.4 overview** 

The world leader in serving science

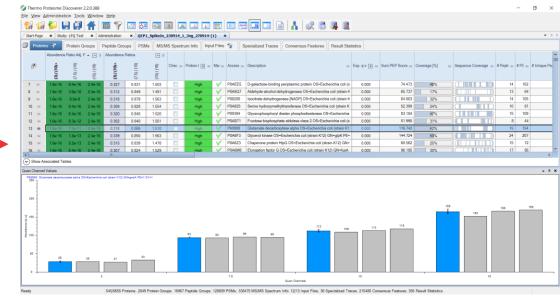
## Proteome Discoverer History

Software for identification and quantification of proteins in complex samples




- 1.0 July, 2008 Workflow-based solution for protein identification
- 1.1 Nov, 2009 Automation, batch processing, reporter ion quantification
- 1.2 Apr, 2011 SILAC quantification
- 1.3 Mar, 2012 Validation (Percolator, PhosphoRS), biological annotation, 64-bit
- 1.4 May, 2013 Deep data mining (Sequest HT, library searching)
- 2.0 Mar, 2015 Architectural changes, study management, large data sets
- 2.1 Oct, 2015 Improved reporter ion quantification
- 2.2 July, 2017 Label Free Quantification, Statistics, Cross-Linking
- 2.3 Jan, 2019 Improved library search, heat maps, PTM site tables, cross-link quantification, annotation groups, ProSightPD
- 2.4 Oct, 2019 Precursor detector/chimeric spectra, scripting node, TMTpro, new licensing



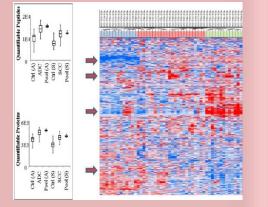

## What is Proteome Discoverer?

- Software for analysis of quantitative discovery proteomics data
- Supports hybrid Orbitrap, Q Exactive, and ion trap mass spectrometers
- Is software for simple conversion of raw files to protein ID lists (with quan) enough?



#### **RAW** files

#### Identified proteins and quantitative results






# Challenges for analysis of quantitative proteomics data

## **Complex studies/Large datasets**

- 100's of raw files
- Results need to presented by sample, not raw file
- Statistics and proper study design are required



### Requires study management

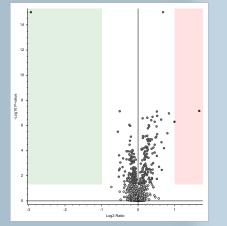

## **Biological complexity**

- >10,000 proteins
- PTMs
- Proteoforms
- Metaproteomics
- Pathway analysis
- Protein structure

### Requires links to bioinformatic databases

#### **Complex acquisition methods**

- TMT SPS MS<sup>3</sup>
- Glycopeptides HCD-triggered-> CID->EThcD
- Cross-linking MS2/MS2/MS3
- Top down CID, ETD, HCD, EThcD, UVPD




### Requires customizable workflows

### **Results interpretation**

- How to denote significantly changing proteins/peptides?
- What is already known about proteins of interest?
- How do we make biological conclusions?

Requires statistics and visualization

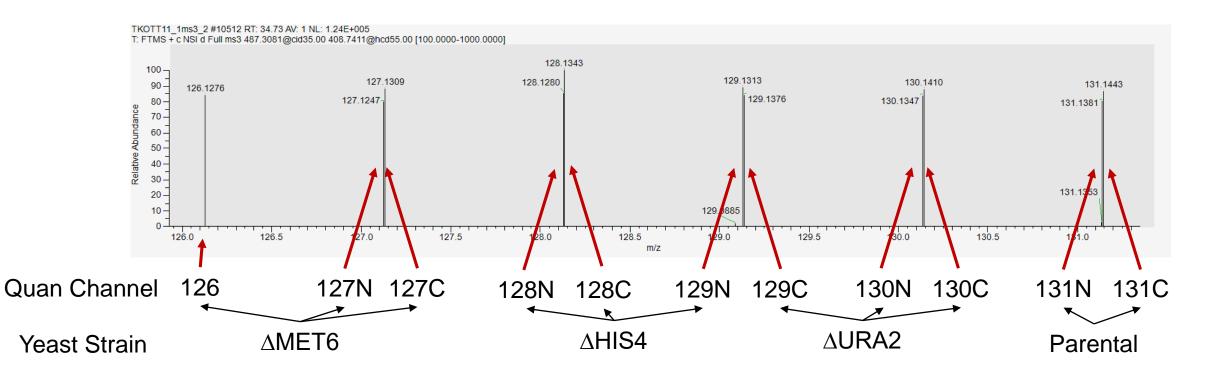




### What is Proteome Discoverer?

Study Management

Client/server based workflow processing system


**Biological Annotation** 

#### Data Interpretation

- Maps "study factors" to quantification channels
- Set up replicates, statistical analysis
- Manage files and search results
- Customizable data analysis pipelines for complex acquisition methods
- Extensible framework allows faster deployment of new algorithms
- Support for large datasets
- Pathway, GO term, protein family annotation
- ProteinCard for summary of known information of selected proteins
- Links to KEGG, Wikipathway, Reactome maps
- Hierarchical views with links between proteins, peptides, PSMs
- Interactive graphical views for statistical analysis



#### Enables users to assign biological meaning ("study factors") to quan channels:





• Create the 4 yeast strains as a study factor

|                                                                                                                                  |                                                                                          |                                                                                        | - 🗆 X                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Ele View Administration Icols Window Help                                                                                        |                                                                                          |                                                                                        | - d                                                                                                       |
| 🙀 Add Files 🍓 Add Fractions 💥 Remove Files 😡 Open Containing Folder 🚳 New Analysis 🧔                                             | Open Analysis Template                                                                   |                                                                                        |                                                                                                           |
| Study Definition Input Files Samples Analysis Results                                                                            |                                                                                          |                                                                                        |                                                                                                           |
| Study Summary                                                                                                                    | Quantification Methods                                                                   |                                                                                        |                                                                                                           |
| Study Name: Triple Knockout Example<br>Study Directory: C:Studiesi Triple Knockout Example<br>Last Changed: 1/29/2018 13:33 IP M | Dimethylation 3plex (C2H6, C2                                                            | iodo TMT 6plex                                                                         | Low Resolution iodo TMT 6ple<br>Method for low resolution cysteine-n<br>6-plex Tandem Mass Tag® of Protec |
| Creation Date: 12/19/2017 10:20:42 AM                                                                                            | Full 180 Labeling (02   1802)                                                            | iTRAQ 4plex<br>Method for iTRAO <sup>™</sup> 4-plex mass tags by<br>Applied Biosystems | Sciences plo<br>Low Resolution TMTe 6plex<br>Method for low resolution 6-plex Ten                         |
| Study Description                                                                                                                | Incomplete 180 Labeling (02  <br>180 labeling method for incompletely labeled<br>samples | iTRAQ 8plex                                                                            | Mass Tag® of Proteome Sciences pl<br>SILAC 2plex (Arg10, Lys6)<br>SILAC 2plex (Arg10, Lys6) Method        |
| Study F                                                                                                                          |                                                                                          | Edt X<br>Hist<br>Mets<br>Parental<br>Ura2                                              |                                                                                                           |
|                                                                                                                                  |                                                                                          |                                                                                        |                                                                                                           |
| Ready                                                                                                                            | Yeast Strain                                                                             | l                                                                                      | Edit ×                                                                                                    |
|                                                                                                                                  |                                                                                          |                                                                                        | His4<br>Met6                                                                                              |
|                                                                                                                                  |                                                                                          | Pa                                                                                     | urental<br>Ura2                                                                                           |
|                                                                                                                                  |                                                                                          |                                                                                        |                                                                                                           |

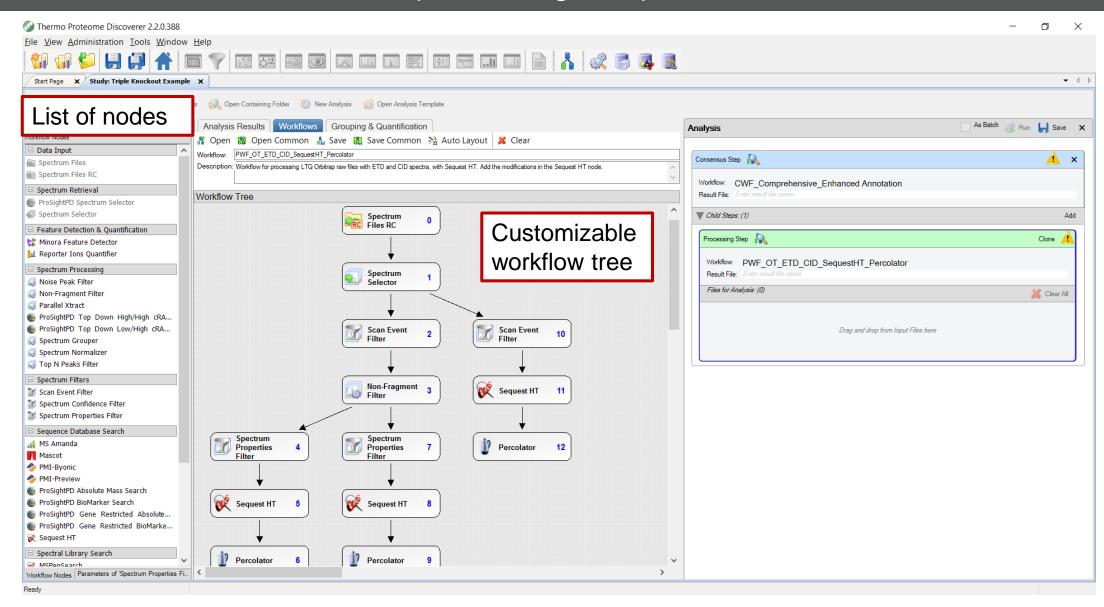
• Assign study factors to the quan channels

| Stud | y Definitio | n Input Files Samples Analysis Results |             |   |             |    |
|------|-------------|----------------------------------------|-------------|---|-------------|----|
|      | Sample      | Sample Identifier                      | Sample Type |   | Yeast Strai | in |
|      |             | • •                                    |             | , |             |    |
| ÷    | S1          | TKOTT11_1ms3_1 - [126]                 | Control     | * | Met6        | Ŧ  |
| ÷    | S2          | TKOTT11_1ms3_1 - [127N]                | Sample      | * | Met6        | *  |
| ÷    | S3          | TKOTT11_1ms3_1 - [127C]                | Sample      | • | Met6        | •  |
| ÷    | S4          | TKOTT11_1ms3_1 - [128N]                | Sample      | • | His4        | •  |
| ÷    | S5          | TKOTT11_1ms3_1 - [128C]                | Sample      | • | His4        | •  |
| ÷    | S6          | TKOTT11_1ms3_1 - [129N]                | Sample      | • | His4        | •  |
| ÷    | S7          | TKOTT11_1ms3_1 - [129C]                | Sample      | • | Ura2        | •  |
| ÷    | S8          | TKOTT11_1ms3_1 - [130N]                | Sample      | • | Ura2        | •  |
| ÷    | S9          | TKOTT11_1ms3_1 - [130C]                | Sample      | • | Ura2        | *  |
| ŧ    | S10         | TKOTT11_1ms3_1 - [131N]                | Sample      | • | Parental    | •  |
| ÷    | S11         | TKOTT11_1ms3_1 - [131C]                | Sample      | • | Parental    | •  |



• Create quantitative ratios based on the Yeast Strain study factor:

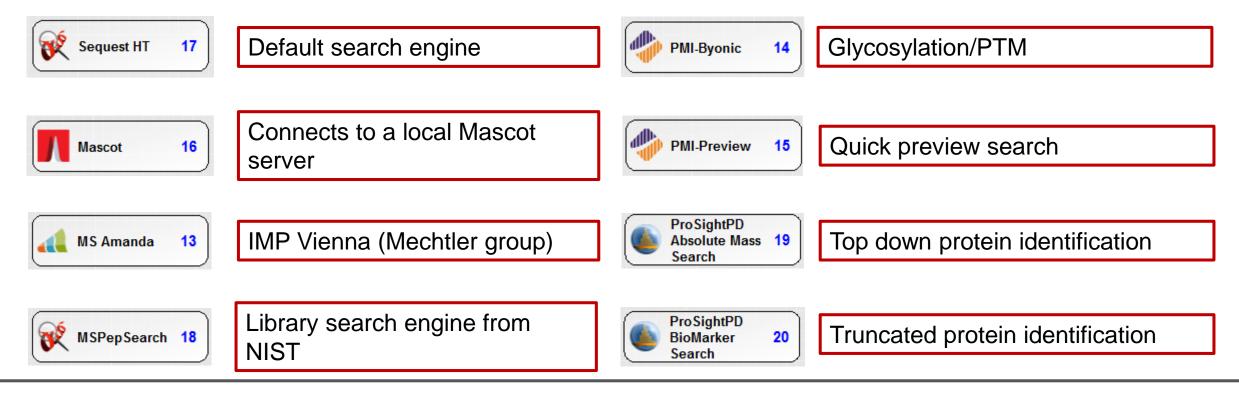
| 🐼 Thermo Proteome Discoverer 2.2.0.388                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              | – 🗆 X                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| <u>File View Administration Tools Window H</u> elp                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
| 🗑 💎 💭 💭 🖓 🐨 💎                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 | J 🗔 📄 👫 🛛 🐗 👼                                                                                                                                                                                                                                                                                                                                                                |                                                                      |
| Start Page × Study: Triple Knockout Example ×                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              | - ↓ ▷                                                                |
| Add Files         Add Fractions         Kernove Files         Open Containing F           Study Definition         Input Files         Samples         Analysis Results         Workflow |                                                                                                                                                                                                                                                                                                                                                                 | Analysis                                                                                                                                                                                                                                                                                                                                                                     | As Batch 🔐 Run 📙 Save 🗙                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                 | Anarysis                                                                                                                                                                                                                                                                                                                                                                     | As batch CF Run H Save X                                             |
| Sample Group and Quan Ratio Specification                                                                                                                                                | Generated Sample Groups                                                                                                                                                                                                                                                                                                                                         | Consensus Step                                                                                                                                                                                                                                                                                                                                                               | ×                                                                    |
| Study Variables                                                                                                                                                                          | Met6         126 Control Met6         F1: TKOTT11_1ms3_1           127N Sample Met6         F1: TKOTT11_1ms3_1           127C Sample Met6         F1: TKOTT11_1ms3_1           128N Sample His4         F1: TKOTT11_1ms3_1           128C Sample His4         F1: TKOTT11_1ms3_1           129N Sample His4         F1: TKOTT11_1ms3_1           Ura2         V | Consensus Step       Image: Consensus Step         Workflow:       CWF_Comprehensive_Enhanced And Result File:         TKOTT11_1ms3_1.pdResult         Child Steps: (1)         Processing Step         Workflow:       PWF_Fusion_TMT_Quan_SPS_MS Result File:         TKOTT11_1ms3_1.msf         Files for Analysis: (1)         x       F1         T       TKOTT11_1ms3_1 | notation_Reporter_Quan Add Clone 33_SequestHT_Percolator X Clear All |
| Add Ratio                                                                                                                                                                                | Generated Ratios 💥 Clear All                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
| Denominator:                                                                                                                                                                             | X Met6 / Parental                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
| Bulk Ratio Generation                                                                                                                                                                    | X His4 / Parental                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
| Denominators to be used:                                                                                                                                                                 | X Ura2 / Parental                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
| │ Yeast Strain : Met6<br>│ Yeast Strain : His4<br>│ Yeast Strain : Ura2<br>☑ Yeast Strain :                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |
| Ratios based                                                                                                                                                                             | d on study factor, n                                                                                                                                                                                                                                                                                                                                            | ot quan chann                                                                                                                                                                                                                                                                                                                                                                | el                                                                   |
| Ready                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |



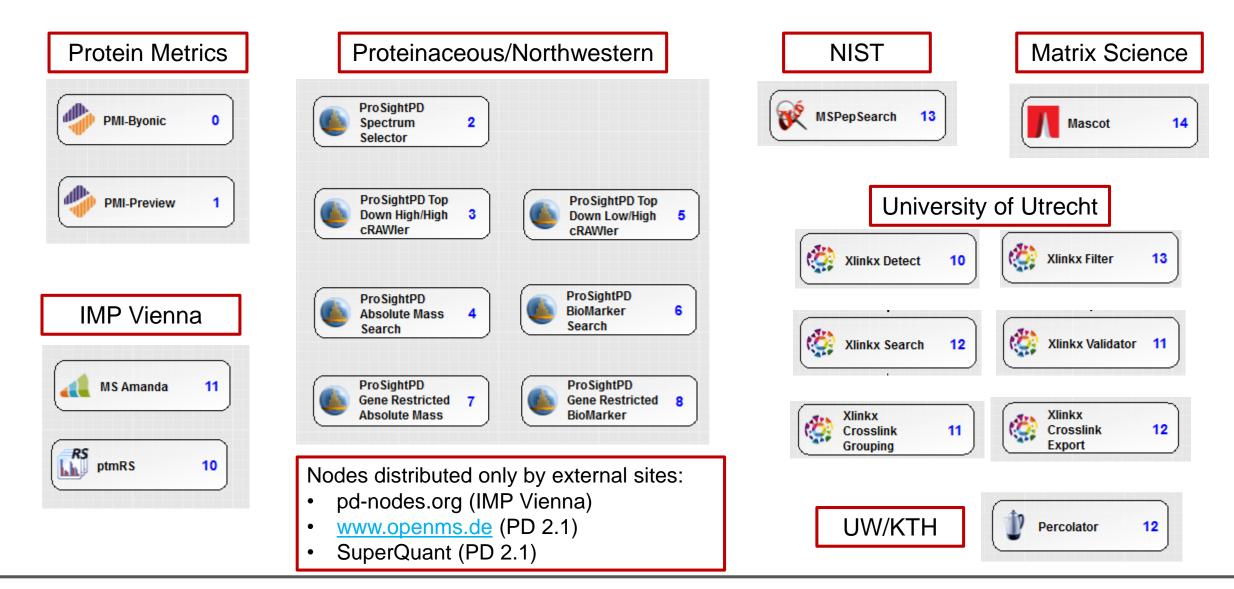

• View results based on study factor rather than quan channel

| tart Page<br>Proteir | _ | tudy: Triple Kno | ck           |           |        | ased on median                                            | ed Traces                    |             |             |           |         | p-val           |       |       |       |       |      |     |
|----------------------|---|------------------|--------------|-----------|--------|-----------------------------------------------------------|------------------------------|-------------|-------------|-----------|---------|-----------------|-------|-------|-------|-------|------|-----|
| f                    |   | Protein FDI 🛨    | V            | value     | s fro  | om replicates                                             | Abundance<br>(International) | Ratios      | (Parental)  | Abundance |         | calcu<br>replic |       |       |       |       | ent  | ts  |
|                      |   |                  |              |           |        |                                                           | (Met6) / (P                  | (His4) / (P | (Ura2) / (P |           |         |                 |       |       |       |       |      |     |
| -12                  |   | High             | $\checkmark$ | PET9      | P18239 | ADP,ATP carrier protein 2 [OS=Saccharomyces cerevisiae :  | 1.646                        | 1.228       | 1.145       | 1.4e-13   | 6.8e-5  | 2.2e-4          | 131.2 | 97.9  | 91.3  | 79.7  | 1.23 | 1.2 |
| -12                  |   | High             | $\checkmark$ | ATP2      | P00830 | ATP synthase subunit beta, mitochondrial [OS=Saccharomy   | 1.518                        | 1.153       | 1.165       | 1.4e-13   | 3.0e-4  | 8.1e-5          | 125.6 | 95.4  | 96.3  | 82.7  | 0.21 | 1.  |
| - <del> =</del>      |   | High             | <b>V</b>     | TDH1      | P00360 | glyceraldehyde-3-phosphate dehydrogenase 1 [OS=Saccha     | 2.310                        | 0.958       | 1.116       | 1.4e-13   | 6.4e-1  | 1.7e-2          | 171.6 | 71.2  | 82.9  | 74.3  | 1.17 | 2.1 |
| -12                  |   | High             | $\checkmark$ | SHM2      | P37291 | Serine hydroxymethyltransferase, cytosolic [OS=Saccharorr | 2.354                        | 1.443       | 1.932       | 1.4e-13   | 2.5e-5  | 3.1e-13         | 139.9 | 85.8  | 114.9 | 59.4  | 0.19 | 1.0 |
| -12                  |   | High             | $\checkmark$ | ADE1      | P27616 | phosphoribosylaminoimidazole-succinocarboxamide syntha    | 1.786                        | 1.318       | 1.639       | 1.4e-13   | 2.5e-5  | 3.1e-13         | 124.4 | 91.8  | 114.1 | 69.6  | 0.89 | 1.6 |
| -12                  |   | High             | $\checkmark$ | GCV2      | P49095 | Glycine dehydrogenase (Decarboxylating), mitochondrial [O | 2.106                        | 1.374       | 1.612       | 1.4e-13   | 4.0e-5  | 4.7e-6          | 138.3 | 90.2  | 105.8 | 65.7  | 1.25 | 0.5 |
| -12                  |   | High             | $\checkmark$ | FAS2      | P19097 | Fatty acid synthase subunit alpha [OS=Saccharomyces cere  | 1.224                        | 1.094       | 1.204       | 1.4e-13   | 2.9e-5  | 3.1e-13         | 108.3 | 96.8  | 106.5 | 88.4  | 0.09 | 0.5 |
| ÷                    |   | High             | $\checkmark$ | YBR085C-A | O43137 | Uncharacterized protein YBR085C-A [OS=Saccharomyces (     | 1.595                        | 1.612       | 1.401       | 1.4e-13   | 6.1e-13 | 5.2e-6          | 113.8 | 115.0 | 99.9  | 71.3  | 1.08 | 1.4 |
| -12                  |   | High             | $\checkmark$ | MET6      | P05694 | 5-methyltetrahydropteroyltriglutamatehomocysteine methy   | 0.073                        | 1.318       | 1.251       | 1.4e-13   | 2.3e-2  | 3.6e-2          | 8.0   | 144.7 | 137.4 | 109.8 | 9.91 | 0.2 |
| ) -1=                |   | High             | $\checkmark$ | RPS21B    | Q3E754 | 40S ribosomal protein S21-B [OS=Saccharomyces cerevisia   | 0.770                        | 1.098       | 0.914       | 4.5e-7    | 3.4e-4  | 1.5e-4          | 81.4  | 116.1 | 96.6  | 105.8 | 0.68 | 0.5 |
| -12                  |   | High             | $\checkmark$ | MDH1      | P17505 | Malate dehydrogenase, mitochondrial [OS=Saccharomyces     | 1.590                        | 1.194       | 1.071       | 1.9e-6    | 4.0e-4  | 1.0e-2          | 131.0 | 98.4  | 88.2  | 82.4  | 0.67 | 1.2 |
| 2 -=                 |   | High             | $\checkmark$ | ARG1      | P22768 | Argininosuccinate synthase [OS=Saccharomyces cerevisia    | 3.735                        | 3.209       | 3.877       | 3.1e-6    | 1.6e-5  | 3.7e-6          | 126.4 | 108.6 | 131.2 | 33.8  | 2.66 | 2.5 |
|                      |   | High             | $\checkmark$ | SAM1      | P10659 | S-adenosylmethionine synthase 1 [OS=Saccharomyces cer     | 1.531                        | 1.070       | 1.181       | 3.6e-6    | 3.1e-2  | 2.5e-4          | 128.1 | 89.5  | 98.8  | 83.7  | 1.60 | 0.9 |
| 4 - E                |   | High             | $\checkmark$ | QCR6      | P00127 | Cytochrome b-c1 complex subunit 6 [OS=Saccharomyces c     | 1.988                        | 1.806       | 1.491       | 3.6e-6    | 1.9e-5  | 2.6e-5          | 126.5 | 114.9 | 94.9  | 63.6  | 1.91 | 1.4 |
| j -⊨                 |   | High             | $\checkmark$ | GLK1      | P17709 | Glucokinase-1 [OS=Saccharomyces cerevisiae S288C]         | 1.456                        | 1.048       | 0.964       | 3.7e-6    | 1.7e-1  | 1.4e-1          | 130.3 | 93.8  | 86.3  | 89.5  | 1.06 | 2.1 |
| 6 🕂                  |   | High             | $\checkmark$ | HSP26     | P15992 | heat shock protein 26 [OS=Saccharomyces cerevisiae S288   | 2.077                        | 0.925       | 0.869       | 3.7e-6    | 2.5e-1  | 1.0e-2          | 170.5 | 76.0  | 71.4  | 82.1  | 1.26 | 3.7 |
| 7 👳                  |   | High             | $\checkmark$ | SAC6      | P32599 | fimbrin [OS=Saccharomyces cerevisiae S288C]               | 1.226                        | 1.099       | 1.284       | 4.0e-6    | 3.0e-4  | 2.2e-6          | 106.4 | 95.4  | 111.4 | 86.8  | 0.79 | 0.4 |
| 3 👳                  |   | High             | $\checkmark$ | ADE6      | P38972 | Phosphoribosylformylglycinamidine synthase [OS=Sacchard   | 1.230                        | 1.073       | 1.239       | 4.1e-6    | 1.5e-3  | 4.6e-6          | 108.3 | 94.5  | 109.1 | 88.1  | 0.20 | 1.1 |
|                      |   | High             | $\checkmark$ | ADE3      | P07245 | C-1-tetrahydrofolate synthase, cytoplasmic [OS=Saccharom  | 1.445                        | 1.194       | 1.488       | 4.3e-6    | 3.0e-4  | 4.6e-6          | 112.8 | 93.2  | 116.1 | 78.0  | 2.01 | 1.0 |




### User customizable workflows for processing complex datasets





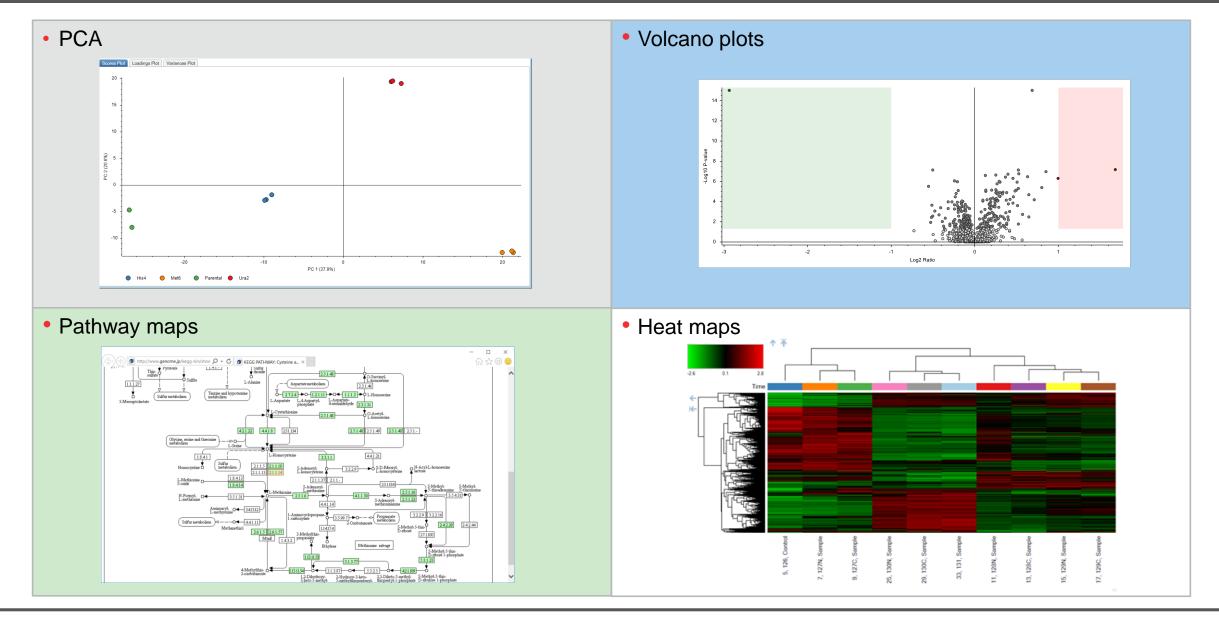

# Search engine nodes available in the PD framework

- Proteome Discoverer framework includes several search engines
- The nodes can be used in series or in parallel to identify more peptides than each individual search engine
- More search engines are currently being developed by 3<sup>rd</sup> parties
- Byonic, ProSightPD, Mascot require purchase of the standalone search engines



# Third party nodes (or nodes that encapsulate 3<sup>rd</sup> party algorithms)




## Thermo Fisher

# Proteome Discoverer Visualization – Hierarchical tables and row filters

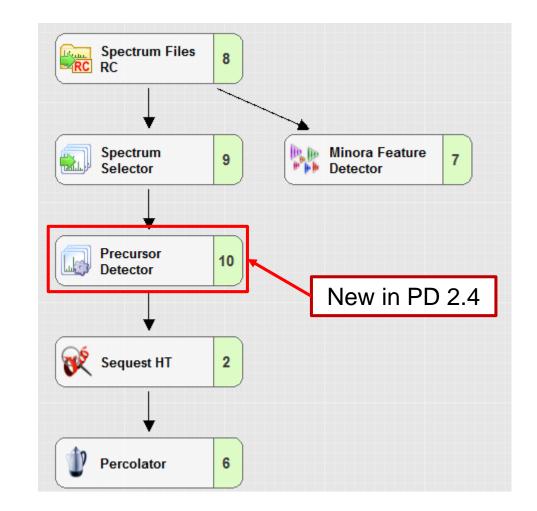
|              | Thermo Proteome Discoverer 2.2                        | 2 0 200            |                                             |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  | σ×                 |
|--------------|-------------------------------------------------------|--------------------|---------------------------------------------|------------------------------------------|--------------------|--------------------|-----------------|-----------------------------|----------------------------------------|-------------------------------|----------------|-----------------|----------------|----------------|----------------|------------------|--------------------|
|              | File View Administration Tools                        |                    |                                             |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  | Li ~               |
|              |                                                       |                    | 🔯 😼 📖 🐼 💌                                   |                                          |                    |                    | 0               |                             |                                        |                               |                |                 |                |                |                |                  |                    |
|              |                                                       |                    | ·                                           |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  | 4.5                |
|              | Start Page X Study: Triple Knockout<br>Display Filter | Example X TKOT     | TT11_1ms3_1 X                               |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  | - 4 b<br>          |
|              | 🚯 Load 🔚 Save 💥 Clear 🎉 Clear A                       | N 🔗 Apply 😭 Cancel |                                             |                                          | _                  |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  | V T A              |
|              | ON Proteins                                           | Proteins           |                                             | Filters                                  | S                  |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  | ^                  |
|              | ON Peptide Groups                                     | Master             | is equal to Master Remove                   |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  |                    |
|              | ON PSMs                                               | KEGG Pa            | athways contains Methionine Remove          |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  | ~                  |
|              | Proteins 💎 Protein Gro                                | pups Peptide Gro   | PSMs MS/MS Spectru                          | m Info 🛛 Input Files 🗣 🗍 St              | ecialized Tra      | aces               |                 |                             |                                        |                               |                |                 |                |                |                |                  |                    |
| Protein      | Checked Protein FDR ( +                               | Master Gene Symbol | Accession Description                       |                                          | Abundance Ra       | atios              | + Abu           | undance Ratio Adj.          | P-Value 🔺 🕂                            | Abundances (G                 | rouped)        |                 | +              | Abundances (Gr | ouped) CVs [%] | + # Unique Pe    | eptides Found in S |
| FIOLEIII     |                                                       | MET6               | P05694 5-methyltetrahydropteroyltriglu      | tamatehomocysteine methyltransferase [C  | 0.073              | 1.318              | 1.251 1         | l.4e-13 2.3e-2              | 2 3.6e-2                               | 8.0                           | 144.7          | 137.4           | 109.8          | 9.91 0.21      | 1.18 3.        | 07               | 32                 |
|              | 2 🗇 🗌 High                                            | MDH1               | P17505 Malate dehydrogenase, mitoch         | nondrial [OS=Saccharomyces cerevisiae S2 | 1.590              | 1.194              | 1.071           | 1.9e-6 4.0e-4               | 4 1.0e-2                               | 131.0                         | 98.4           | 88.2            | 82.4           | 0.67 1.25      | i 2.27 0.      | 12               | 7                  |
|              | 3 ⊣⊐ 🔲 High                                           | SAM1               |                                             | se 1 [OS=Saccharomyces cerevisiae S288C  |                    | 1.070              | 1.181           | 3.6e-6 3.1e-2               |                                        | 128.1                         | 89.5           | 98.8            | 83.7           | 1.60 0.90      |                |                  | 6                  |
|              | 4 -⊨ 🗌 High                                           | SAH1               | P39954 Adenosylhomocysteinase [OS           | =Saccharomyces cerevisiae S288C]         | 1.352              | 0.964              | 1.044 8         | 8.1e-6 2.5e-1               | 1 1.3e-1                               | 124.0                         | 88.5           | 95.8            | 91.7           | 0.25 0.48      | 2.12 2.        | 04               | 15                 |
|              |                                                       |                    |                                             |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  |                    |
| Peptide grou | JPS fOr de Group                                      | ps PSMs MS/        | MS Spectrum Info                            |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  |                    |
|              | 0                                                     | otated Sequence Mo | difications                                 | 🔺 Quan Info                              | Quan Usa           | age                | Abundance R     | atios                       | + Abur                                 | ndance Ratio Ad               | j. P-Value 🛨   | Abundances (    | Grouped)       |                | + Ab           | oundances (Group | ed) CVs [%] 😝 📥    |
| selected pro |                                                       | FWVNPDCGLK.[T] 1×0 | Carbamidomethyl [C7]; 1×TMT6plex [K10]; 1×  | TMT6plex [N-Term                         |                    | Used               | 0.010           | 1.413                       | 1.425 1.6                              | 6e-3 1.0e0                    | 1.0e0          | 1.0             | 146.9          | 148.1          | 104.0          | 39.45 4.40       | 2.95 2.69          |
|              | 2 - KI.G                                              | GTISAEEYEK.[F] 1×1 | TMT6plex [K10]; 1×TMT6plex [N-Term]         |                                          |                    | Used               | 0.053           | 1.273                       | 1.249                                  | 2.3e-1                        | 2.8e-1         | 5.9             | 142.5          | 139.8          | 111.9          | 3.24             | 9.29 2.51          |
|              | 4                                                     |                    |                                             | ,                                        |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  | •                  |
|              | Hide Associated Tables                                |                    |                                             |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  |                    |
| PSMs for s   | elected tein Groups                                   | s PSMs MS/M        | IS Spectrum Info                            |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  |                    |
|              | onfidence Anno                                        | otated Sequence    | Modifications                               | # Protein Groups Master Protein Accessio | ns Charge Ran      | k m/z [Da] Δ       | M [ppm] Average | e Reporter S/N At           | bundances                              |                               |                |                 |                |                |                |                  |                    |
| peptide gro  |                                                       | WVNPDcGLk.[T]      | N-Term(TMT6plex); C7(Carbamidon             | 1 P05694                                 | 2 1                | 847.46016          | -0.35           | 341.6                       | 2.0                                    | 3.1 1                         | 0.7 4          | 76.9 4          | 81.7 4         | 54.5 49        | 0.9 492.3      | 477.0            | 323.4              |
|              | 4                                                     |                    |                                             |                                          |                    |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  | •                  |
|              | Quan Channel Values                                   |                    |                                             |                                          |                    |                    | – A X Fr        | agment Match Spe            | ctrum                                  |                               |                |                 |                |                |                |                  | <b>→</b> ₽ ×       |
|              | Profession                                            |                    |                                             |                                          |                    |                    |                 | TKOTT11 1ms3 1.             | raw #26200 RT: 6<br>id35.00, z=+2, Mon | 1.4491 min<br>o m/z=847.46016 | 5 Da, MH+=1693 | .91303 Da, Mato | ch Tol.=0.6 Da |                |                |                  |                    |
| Quan resu    | ilts for                                              | 147                | 153 148 140 148                             | 150 151 143                              |                    | 107                | 100             | 2 150 v,+                   | b1-                                    | -                             | b              |                 | h              |                |                | 153              | 6.81               |
| Quarrest     |                                                       |                    |                                             |                                          | 104 103            | 107                |                 | 100<br>50 376.27            | 377.34 546.                            | 35 b <sub>2</sub>             | b3             | ۸n              | note           | stad           | MS/I           |                  | 5.88               |
| selected p   | orotein or                                            |                    | His4                                        | Urs2                                     | Pare               | ental              | :               | <u>ة</u> ٥ <del>٤ , ,</del> | 400                                    | 600                           |                |                 | ΠΟισ           | aleu           |                |                  | 1600               |
| -            |                                                       |                    | Quan Channels                               |                                          |                    |                    |                 | -                           |                                        |                               |                | sn              | ectru          | Im             |                |                  |                    |
| peptide gr   | OUD                                                   | 17/1275 Prote      | eins: 1010 Protein Groups: 5855 Peptide Gro | ups: 6338 PSMs: 16687 MS/MS Spectrum I   | fo: 1/2 Input File | s; 2 Specialized 1 | Traces          |                             |                                        |                               |                |                 | 5500           |                |                |                  |                    |
| popudo gi    | oap                                                   |                    |                                             |                                          | no, ne inpart no   |                    |                 |                             |                                        |                               |                |                 |                |                |                |                  |                    |



# Proteome Discoverer Tools for statistical and biological interpretation

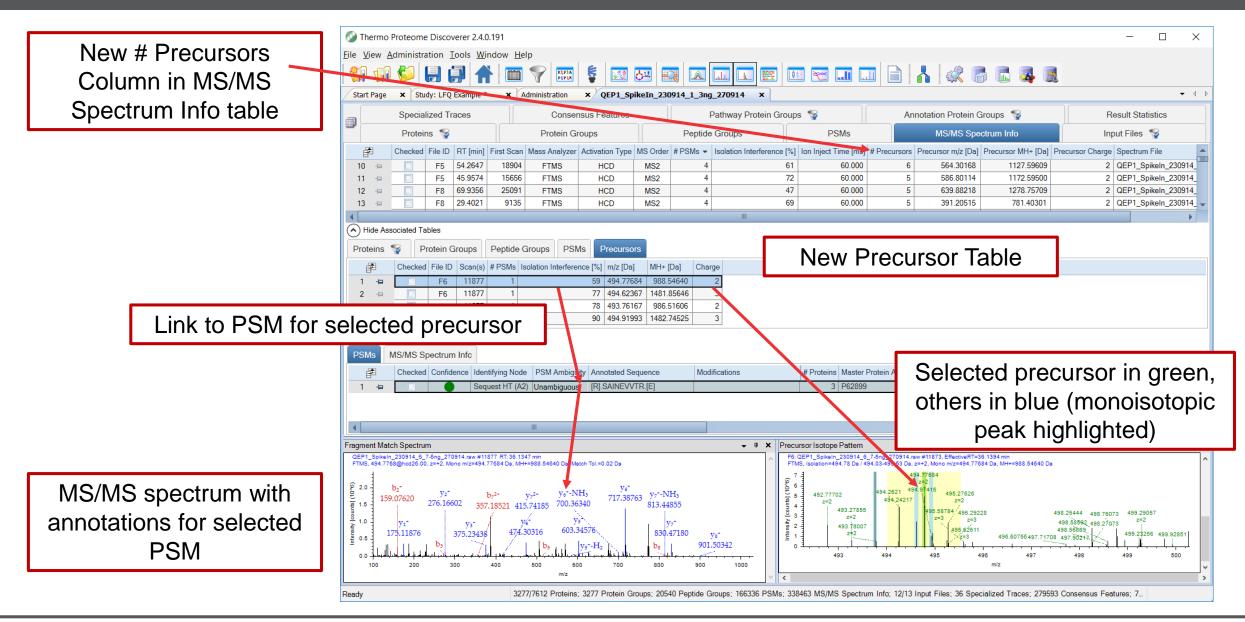





## Proteome Discoverer 2.4 Overview

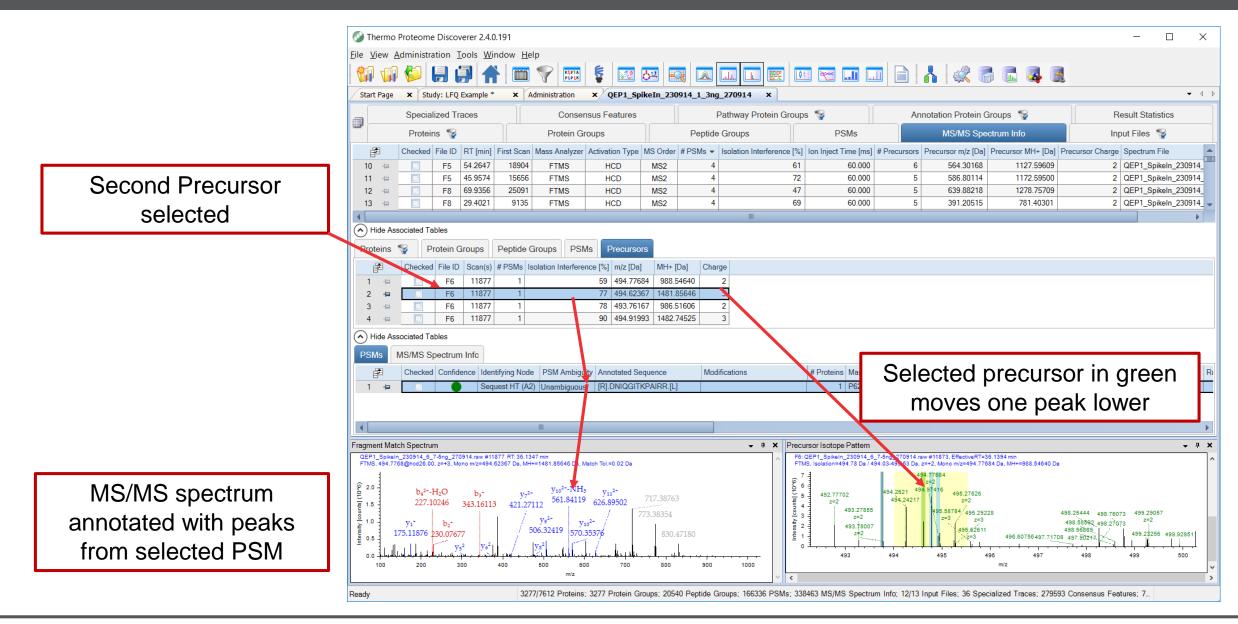
- Mixed spectra/chimeric spectra support
  - Precursor Detector node
  - Works with Sequest HT and MSPepSearch search engines only
- Scripting node
  - Incorporate R, Python, or other scripts into Proteome Discoverer workflows
- New TMTpro 16plex method
- FAIMS LFQ license no longer needed
- New Flexera licensing (like Thermo Scientific<sup>™</sup> BioPharma Finder<sup>™</sup> software)
- Updated Proteome Tools libraries coming soon
- Updated Familiarization Exercises




## Proteome Discoverer 2.4 – Precursor Detector

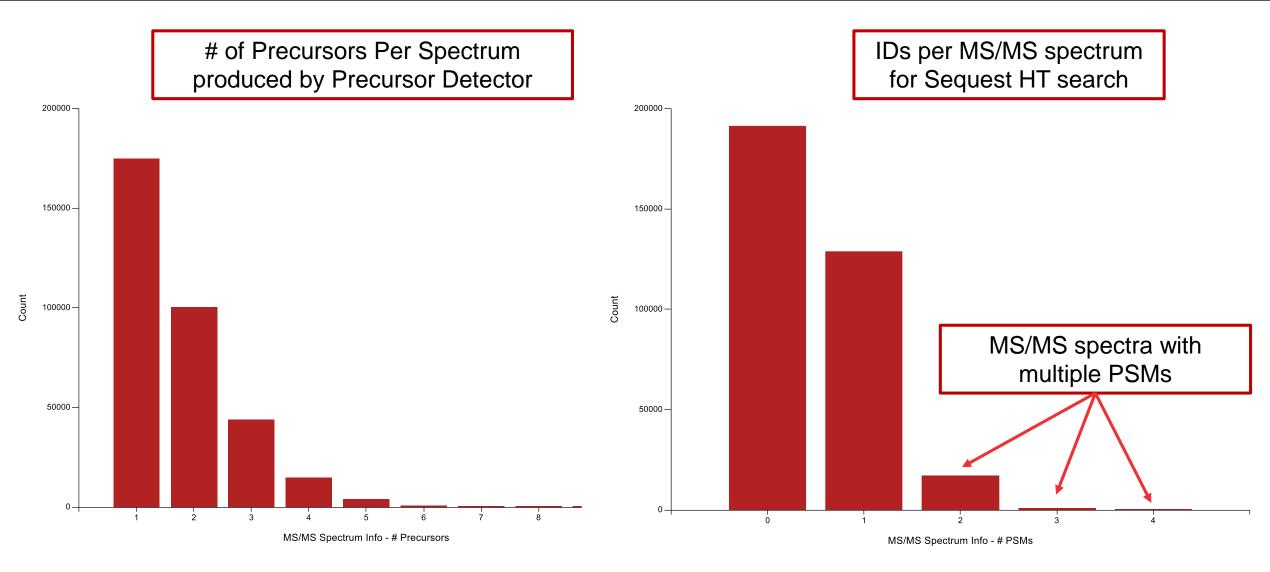
- Spectrum Selector by default chooses isotopic cluster selected by instrument
- Precursor Detector node
  - Detects other isotopic clusters with peaks within the precursor isolation window
  - Duplicates MS/MS spectrum for each new precursor mass
  - Only input parameter: Input S/N
  - Search engine can identify multiple peptides in the same MS/MS spectrum.
- Works only with Sequest HT and MSPepSearch
- Can increase proteins IDs up to 10-20%, peptide group IDs up to 15-30%





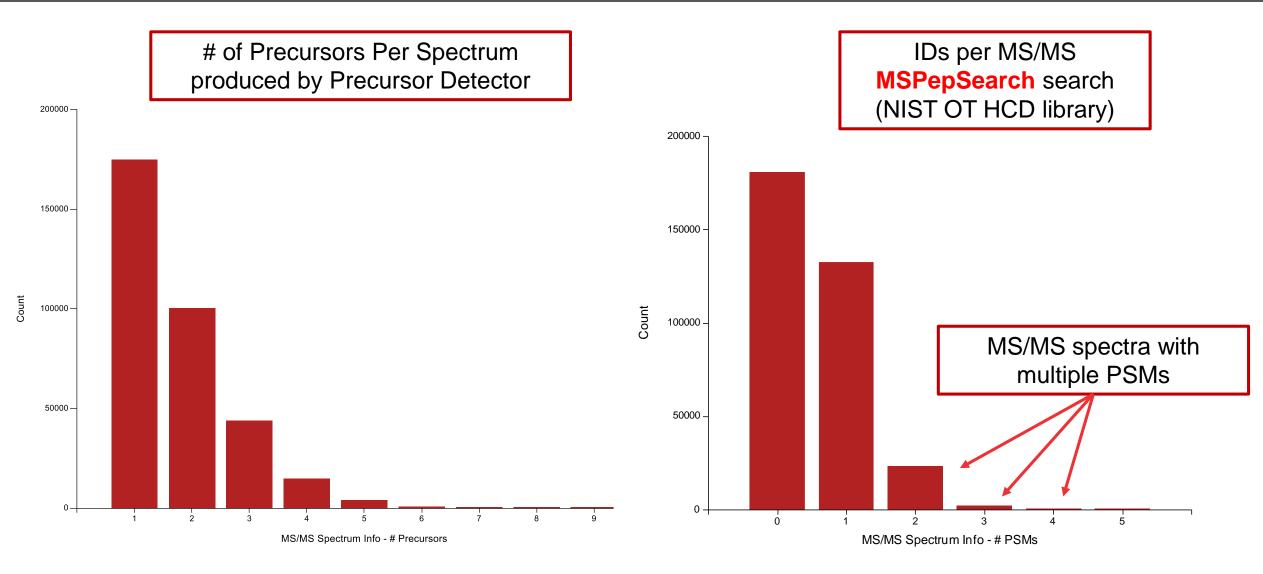

# Precursor Detector Node produces new Precursor Table






# New Precursor Table – Second Precursor Selected for same MS/MS spectrum






#### # Precursors and **Sequest HT** PSMs per MS/MS spectrum using Precursor Detector node

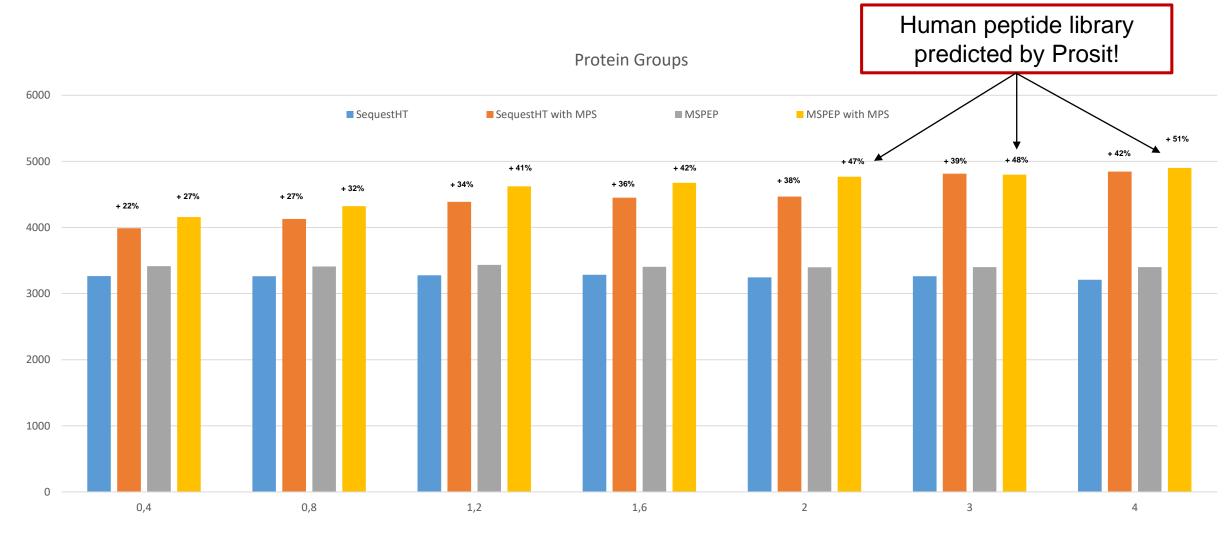


#### Data from Exercise 3 in Familiarization Guide





#### Data from Exercise 3 in Familiarization Guide




# LFQ Example data Familiarization Exercise 3 – With and Without Precursor Detector

|                     |        |                |             | MSPepS | earch (NIST C | T HCD library) |
|---------------------|--------|----------------|-------------|--------|---------------|----------------|
|                     | Se     | equest HT + Pe | rcolator    |        | + Percolat    | or             |
|                     |        | PD 2.4 with    |             |        | PD 2.4 with   |                |
|                     |        | Precursor      |             |        | Precursor     |                |
|                     | PD 2.3 | Detector       | Improvement | PD 2.3 | Detector      | Improvement    |
| PSMs                | 129705 | 166336         | +28%        | 135710 | 185457        | 7 +37%         |
| Peptide Groups      | 17288  | 20540          | +18%        | 17771  | 22500         | ) +26%         |
| Quantified Peptides | 16250  | 19122          | +18%        | 16659  | 20827         | 7 +25%         |
| Proteins            | 2931   | 3277           | +12%        | 2797   | 3233          | 3 <b>+16%</b>  |
| Quantified Proteins | 2757   | 3062           | +11%        | 2607   | 3043          | 3 <b>+17%</b>  |

- Without Precursor Detector, Sequest HT and MSPepSearch perform similarly
- With Precursor Detector, MSPepSearch identifies ~10% more unique peptides than Sequest HT.
- MSPepSearch requires a comprehensive spectral library, which is currently only available for the unlabeled human proteome (NIST OT HCD)

# Figure from Bernard Delanghe's ASMS 2019 poster (MP 414)




Use of Precursor Detector (MPS) leads to increased IDs with wider isolation windows!

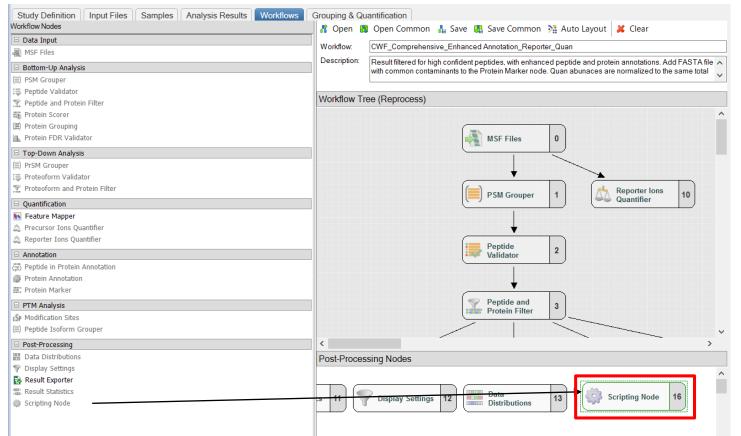


# Proteome Discoverer 2.4 – Scripting Node

- New Scripting Node in Proteome Discoverer
   2.4 and Thermo Scientific<sup>™</sup>
   Compound Discoverer<sup>™</sup> 3.1
  - Enable users to incorporate R and Python scripts (or any other executable) to perform custom data analysis
  - Installed as a Post-Processing node
  - Can also register custom scripting nodes as a
     Processing, Consensus, or Post-Processing node
  - Can access any information from any visible table
    - No access to MS/MS spectra or study information






# What about customers who know R, Python, Java, etc?

- In past releases, it is possible to create nodes in C# that call R, Python scripts or other executables
- These required learning C# .NET and using Visual Studio in past releases.
- New Scripting Node in Proteome Discoverer 2.4 and Thermo Scientific<sup>™</sup> Compound Discoverer<sup>™</sup> 3.1
- Enable users to incorporate R and Python scripts to perform their own type of data analysis
- Scripts have access to data from any of the result tables
- Caveats:
  - Scripting node for PD 2.4 does not have access to:
    - The raw mass spectra
    - The study information



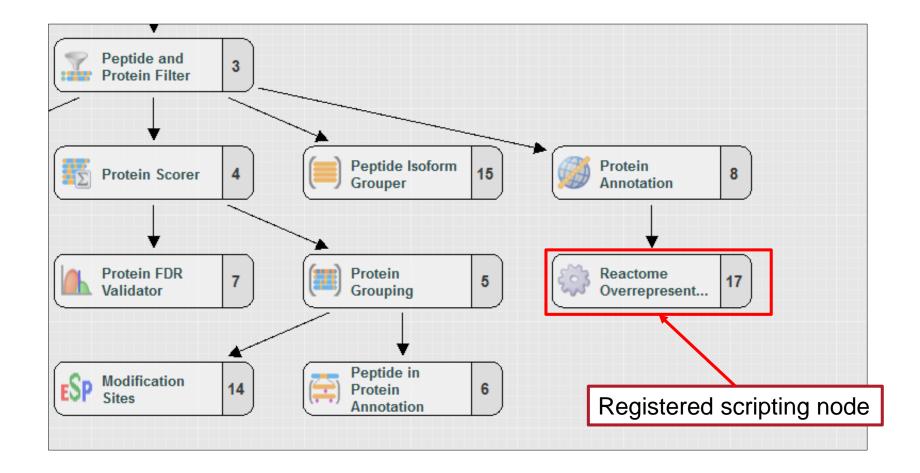
## Scripting node – primary use will be as a post-processing node

• Scripting node in Proteome Discoverer 2.4 is shown as a Post-Processing node:



• It is possible to register a scripting node as a Processing or Consensus workflow node




# Scripting Node parameters

| Show Advanced Parameters                      |                                                                                        |
|-----------------------------------------------|----------------------------------------------------------------------------------------|
| <ul> <li>Executable and Parameters</li> </ul> |                                                                                        |
| Path to Executable                            | C:\Program Files\R\R-3.5.3\bin\Rscript.exe                                             |
| Command Line Arguments                        | c:\RScripts\Reactome\Reactome.R %NODEARGS%                                             |
| Requested Tables and Columns                  | Proteins:Accession, Abundance Ratio P-Value; Pathway Protein Groups: Pathway Accession |
| Use R-Friendly Columns                        | True                                                                                   |
| Archive Datafiles                             | True                                                                                   |

- Path to Executable usually the executable for the scripting language (e.g. Rscript.exe) but any
  executable will work
- Command Line Arguments Name of the script + what will be the link to the input data for the script
- Requested Tables and Columns PD result tables and columns to be sent to the script
- Use R-Friendly Columns removes special characters (e.g. #, /, (), []) from column headers
- Archive data files saves a copy of files used by and produced by scripting node



# Registering the scripting node for use in Processing or Consensus Workflows



Registered scripting nodes are easier to transfer to other Proteome Discoverer installations



# Scripting node in action – messages written by script appear in the Run Queue

| Thermo Proteome Discoverer 2.4.0.173                        |                          |              |            |                                                                         |                    |                  |                     |          |             |      | - 0         |   |
|-------------------------------------------------------------|--------------------------|--------------|------------|-------------------------------------------------------------------------|--------------------|------------------|---------------------|----------|-------------|------|-------------|---|
| View Administration Tools Window Help                       |                          |              |            |                                                                         |                    |                  |                     |          |             |      |             |   |
| 🗿 🕼 🗳 🔒 🎒 👫 🔲 💙 🔤 📴                                         |                          |              | 1 🐇        | 2 📑 🖬 💐 🖉                                                               |                    |                  |                     |          |             |      |             |   |
| Start Page × Study: TMT Phosphopeptide Example × Administra | ration ×                 |              |            |                                                                         |                    |                  |                     |          |             |      |             |   |
| Process Management                                          | 🗙 🐴 🖓 Pause 🎲 Resume 👔   | 🕽 Abort 🛛 🐊  | Remove     | 🍣 Refresh 🛛 👹 Open Re                                                   | sults 🍿 Open S     | itudy 🗌 Disp     | play Verbose Mes    | sages    |             |      |             |   |
| 🖉 Job Queue                                                 | Job Queue:               |              |            |                                                                         |                    |                  |                     |          |             |      |             |   |
| Son from                                                    | Execution State Detai    | s Progress   | Туре       | Name                                                                    | Submittee          | lat ⊽            | Study               |          | Data Source |      | Description |   |
| Content Management                                          | *                        |              | .,,,,      |                                                                         | =                  |                  | Study               |          | Data Source |      | beschpash   | _ |
| -                                                           | Time Processi            |              | Level      |                                                                         |                    |                  | Message             |          |             |      |             |   |
| FASTA Files                                                 | 2:53 PM (16): Scriptir   | -            |            | g data for table Pathway Prote                                          | ain Groups         |                  | Hessage             |          |             |      |             | - |
| FASTA Indexes                                               | 2:53 PM (16): Scriptin   | -            |            | xecutable finished successfully                                         |                    |                  |                     |          |             |      |             |   |
|                                                             |                          | -            |            |                                                                         |                    |                  |                     |          |             |      |             |   |
| FASTA Parsing Rules                                         | - 2:53 PM (16): Scriptin | -            |            | % of input gene IDs are fail to<br>hitr(genel ist_fromType = "!!        |                    |                  | raDh — "ara Us cara | 46.00    |             |      |             |   |
|                                                             | 2:53 PM (16): Scriptin   | -            |            | <pre>bitr(geneList, fromType = "U % of input gaps IDs are fail to</pre> |                    | ENTREZID', U     | rgob = org.Hs.eg.d  | ):       |             |      |             |   |
| Dectral Libraries                                           | - 2:53 PM (16): Scriptin | -            |            | % of input gene IDs are fail to                                         |                    |                  |                     | JL IIX . |             |      |             |   |
| Remical Modifications                                       | 2:53 PM (16): Scriptir   | -            |            | bitr(geneList, fromType = "U                                            | NIPROT", toType =  | "ENTREZID", O    | rgDb = "org.Hs.eg.d | 1D"):    |             |      |             |   |
|                                                             | 2:53 PM (16): Scriptir   | -            |            | ng messages:                                                            |                    |                  |                     |          |             |      |             |   |
| Cleavage Reagents                                           | - 2:53 PM (16): Scriptir | -            |            | ctivation of DNA fragmentatio                                           |                    |                  |                     |          |             |      |             |   |
|                                                             | 2:53 PM (16): Scriptir   | -            |            | Levels: hsa00010 hsa00020 h                                             | nsa00030 hsa00040  | hsa00051 hsa00   | 052 WP98            |          |             |      |             |   |
| Annotation Aspects                                          | - 2:53 PM (16): Scriptir | -            |            | HSA-211227                                                              |                    |                  |                     | _        |             | _    | _           | - |
| Quantification Methods                                      | - 2:53 PM (16): Scriptir | -            |            | ound overrepresented pathwa                                             |                    | <b></b>          |                     |          | o orint     | ahai |             |   |
|                                                             | 2:53 PM (16): Scriptir   | -            |            | poptosis induced DNA fragme                                             |                    |                  | Jut Iroi            | m K      | script      | SNOV | NN          |   |
| License Management                                          | 2:53 PM (16): Scriptir   | -            |            | Levels: hsa00010 hsa00020 h                                             | nsa00030 hsa00040  |                  |                     |          | •           |      |             |   |
|                                                             | * 2:53 PM (16): Scriptir | -            |            | HSA-140342                                                              |                    | i in th          | e Run               | Qu       | eue         |      |             |   |
| R Licenses                                                  |                          | ig Node 🛛 Ir |            | ound overrepresented pathwa                                             |                    |                  |                     |          |             |      |             | J |
|                                                             | 2:53 PM (16): Scriptir   | ig Node 🛛 Ir | nfo [1] "  | ormation of Senescence-Asso                                             | ciated Heterochrom | atin Foci (SAHF) | "                   |          |             |      |             |   |
| Configuration                                               | * 2:53 PM (16): Scriptir | ig Node 🛛 Ir | nfo 2160   | Levels: hsa00010 hsa00020 h                                             | nsa00030 hsa00040  | hsa00051 hsa00   | 052 WP98            |          |             |      |             |   |
| ⊡- 📁 Processing Settings                                    | - 2:53 PM (16): Scriptir | ig Node 🛛 Ir | nfo [1] R  | HSA-2559584                                                             |                    |                  |                     |          |             |      |             |   |
| Annotation Server                                           | - 2:53 PM (16): Scriptin | ig Node Ir   | nfo [1] "l | ound overrepresented pathwa                                             | y in PD results"   |                  |                     |          |             |      |             |   |
| Display Settings                                            |                          | ig Node 🛛 Ir | nfo [1] "r | TORC1-mediated signalling"                                              |                    |                  |                     |          |             |      |             |   |
| ∰ IMP-ptmRS<br>⊛ <mark>C</mark> Mascot                      |                          | ig Node Ir   | nfo 2160   | Levels: hsa00010 hsa00020 h                                             | nsa00030 hsa00040  | hsa00051 hsa00   | 052 WP98            |          |             |      |             |   |
| Minora Feature Detector                                     | 2:53 PM (16): Scriptir   | ig Node Ir   | nfo [1] R  | HSA-166208                                                              |                    |                  |                     |          |             |      |             |   |
| MSF Files                                                   |                          | ig Node Ir   | nfo [1] "I | ound overrepresented pathwa                                             | y in PD results"   |                  |                     |          |             |      |             |   |
| - I MSPepSearch                                             | 2:53 PM (16): Scriptir   | ig Node Ir   | nfo [1] "[ | eadenylation-dependent mRN                                              | A decay"           |                  |                     |          |             |      |             |   |
| e- 💋 Sequest<br>                                            | 2:53 PM (16): Scriptir   | -            |            | Levels: hsa00010 hsa00020 h                                             |                    | hsa00051 hsa00   | 052 WP98            |          |             |      |             |   |
| Spectrum Files RC     B    Spectrum Libraries               | 2:53 PM (16): Scriptir   | 2            |            | HSA-429914                                                              |                    |                  |                     |          |             |      |             |   |
| E Server Settings                                           | 2:53 PM (16): Scriptir   | 2            |            | ound overrepresented pathwa                                             | v in PD results"   |                  |                     |          |             |      |             |   |
| Temporary Files                                             | 2:53 PM (16): Scriptir   | 2            |            | poptotic execution phase"                                               | ,                  |                  |                     |          |             |      |             |   |
| Parallel Job Execution                                      | 2:53 PM (10): Scriptin   | -            |            | Levels: hsa00010 hsa00020 h                                             | 15200030 bc200040  | hsa00051_hca00   | 052 W/P08           |          |             |      |             |   |
| - Interest - Indexes                                        | - 2:53 PM (16): Scriptin | 2            |            | HSA-75153                                                               | 13400000 115400040 | 11500051 115000  | 032 WF 90           |          |             |      |             |   |
| WE FROM HUCKES                                              |                          | -            |            |                                                                         | win PD results"    |                  |                     |          |             |      |             |   |
|                                                             | 2:53 PM (16): Scriptir   | 2            |            | ound overrepresented pathwa                                             | y in PD results"   |                  |                     |          |             |      |             |   |



# Scripting node can add new columns and tables to the result

| -   |             |     |          |          | rer 2.4.0.17      |          |           |                          |                               |                |                      |            |             |                               |                          |                                       | -              | o ×        |
|-----|-------------|-----|----------|----------|-------------------|----------|-----------|--------------------------|-------------------------------|----------------|----------------------|------------|-------------|-------------------------------|--------------------------|---------------------------------------|----------------|------------|
|     |             |     |          |          | ools <u>W</u> ind |          |           |                          |                               |                |                      |            |             |                               |                          |                                       |                |            |
| Ŷ   | 1           | 1   | <b> </b> | -        |                   |          | 7         | 2 5 <u>4</u> 🔲 🕰 (       | ulu 💷 🖭                       | 🔁 🛄 🛛          | □ 🗈 👗                | Ŕ          | 6           | 🛛 🌉 🔜                         |                          |                                       |                |            |
| s   | art Pag     | e × | Stu      | dy: TMT  | Phosphopept       | ide Exam | ple :     | × Administration ×       | TMT Phosphopeptide Exa        | mple-(33) ×    |                      |            |             |                               |                          |                                       |                | <b>-</b> ∢ |
|     |             |     | Prote    | ins 💡    |                   |          | Pro       | tein Groups              | Peptide Gro                   | ips            | Peptic               | le Isoforn | s           | Modifica                      | ation Sites              | PSMs                                  | MS/MS Spectrum | Info       |
|     |             |     | Quar     | Spectr   | а                 |          | Ing       | out Files ॷ              | Specialize                    | d Traces       |                      | Pathwa     | Protein G   | roups 💎                       | Annotation               | Protein Groups 🛭 💱                    | Result Stati   | stics      |
|     | P           | Ch  | ecked    | Group II | D Pathway A       | ccession | Pathway L | evel Pathway Description |                               | Pathway Source | ce # Master Proteins | # Pro      | eins -10Log | PValue Insulin Con 👻 -10      | 0LogPValue IGF-1 Control |                                       |                |            |
|     | 1 👳         |     |          |          | 6 R-HSA-12        |          | Leaf      | Interleukin-7 signaling  |                               | Reactome       |                      | 7          |             | 163.43770                     |                          |                                       |                |            |
|     | 2 🕀         |     |          |          | 5 R-HSA-42        |          | Leaf      |                          | MT2 (G9a) positively regulat  | e Reactome     |                      | 17         | 36          | 138 30990                     |                          |                                       |                |            |
|     | 3 👳         |     |          |          | R-HSA-32          |          | Leaf      | HDMs demethylate his     |                               | Reactome       |                      | 12         | 14          | 124.73350                     |                          |                                       |                |            |
|     | <b>4</b> -⊨ |     |          |          | R-HSA-32          |          | Leaf      | HDACs deacetylate his    |                               | Reactome       |                      | 22         |             | 123.03750                     |                          |                                       |                |            |
|     | 5 🕂         |     |          |          | R-HSA-56          |          | Leaf      |                          | ates transcription of AR (and |                |                      | 8          | 26          | 121.05480                     |                          |                                       |                |            |
|     | 5 -12       |     |          |          | R-HSA-22          |          | Leaf      | Condensation of Proph    |                               | Reactome       |                      | 9          | 30          | 114.76200                     |                          |                                       |                |            |
|     | 7 👳         | _   |          |          | R-HSA-52          |          | Leaf      | B-WICH complex posit     |                               | Reactome       |                      | 16         | 35          | 113.49040                     |                          |                                       |                |            |
|     | 3 🕁         |     |          |          | 5 R-HSA-73        |          | Leaf      | RNA Polymerase I Pro     | ma por                        | Reactome       |                      | 5          | 23          | 111.98370                     |                          |                                       |                |            |
|     | 9 👳         |     |          | 3/2      | 2 R-HSA-53        | 34118    | Leaf      | DNA methylati            |                               | Reactome       |                      | 6          | 25          | 110.14020                     |                          |                                       |                |            |
|     |             |     |          |          |                   |          |           |                          |                               |                |                      |            |             | overer 2.4.0.178              |                          |                                       |                |            |
| ۸/  | n           | ٦lı |          | m        | าร:               |          |           |                          |                               |                |                      |            |             | n <u>T</u> ools <u>W</u> inde | low <u>H</u> elp         |                                       |                |            |
| / V |             | יוכ | u        | 111      | 13.               |          |           |                          |                               |                |                      |            |             | (D) / 51                      |                          |                                       |                |            |
|     |             |     |          |          |                   |          |           |                          |                               |                |                      |            |             |                               |                          | · · · · · · · · · · · · · · · · · · · |                | 🕴 🍳        |

-10logP value for overrepresentation for proteins from insulin or IGF-1 stimulation

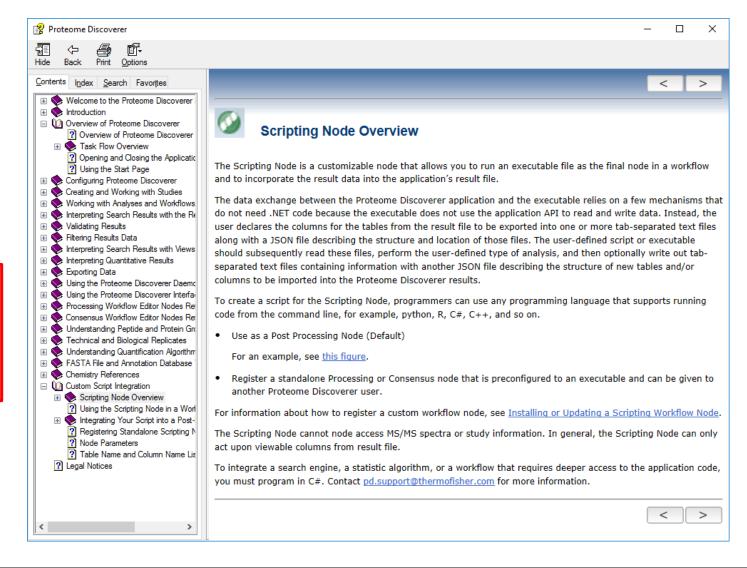
| eins from insulin or IGF-1 stir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ra Input Files Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | New table with lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ks to existing tables | ProteinStartsWith                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21         =         100/         R+TAK-19/2400         Leaf         Prevent Hindschipter Handlicher Innerstein           23         =         2/1         R+TSK-19/225         Leaf         Annyloid ther formation           23         =         2/1         R+TSK-19/225         Leaf         Annyloid ther formation           24         =         3/5         R+TSK-19/225         Leaf         Activation of anterior HOX genes in hindbrain develor           24         =         3/5         R+TSK-19/225         Leaf         Activation of anterior HOX genes in hindbrain develor           25         =         3/5         R+TSK-21/247         Leaf         HATS resolvable histonse           26         =         1648         R+TSK-21/227         Leaf         Activation of DNA fragmentation factor           27         =         2/04         R+TSK-25/554         Leaf         Formation of Senescence-Associated Heterochrome           28         =         1646         R+TSK-2163         Leaf         mTNA Splicing - Major Pathway           30         =         1167         R+TSK-18208         Leaf         mTNA Splicing - Major Pathway           31         =         121         R+SK-18208         Leaf         mTNA Splicing - Major Pathway | Reactome         3         -         -           Reactome         4         -         -           Reactome         5         -         -           Reactome         6         -         -           Reactome         7         -         -           Reactome         8         -         -           Reactome         8         -         -           Reactome         9         -         -           Reactome         10         -         -           Reactome         11         -         -           Reactome         11         -         - | 2         B         80           3         C         266           4         D         120           5         E         133           6         F         66           7         G         93           8         H         169           9         I         4202           10         J         6           11         K         49           12         L         75           13         M         158                                                                                                                                                              | ProteinStartsWith<br>36 items shown (0 filtered out)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Proteins Checke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | High     ✓     Q9BRD0     BUD13 homolog [OS=H       High     ✓     Q8NFC6     Biorientation of chromos       High     ✓     Q9UHR4     Brain-specific angiagen       High     ✓     Q9UHR4     Brain-specific angiagen       High     ✓     Q9UHR4     Brain-specific angiagen       High     ✓     Q43491-1     band 4.1-like protein 2 [       High     ✓     Q43491-1     band 4.1-like protein 2 [       High     ✓     Q9UF9-1     Bromodomain adjacent       High     ✓     Q9UF9-1     Bromodomain adjacent       High     ✓     Q9UF9-1     Bromodomain adjacent | DS=Homo sapiens]         0.000         85.699           ption factor 1 [OS=Homo:         0.000         83.189           omo sapiens]         0.000         56.150         2           sis inhibitor 1-associated           0.000         46.794         2           sapiens]         0.000         40.442         2           S=Homo sapiens]         0.000         32.169         2           formo sapiens]         0.000         24.952         2           op circ finger domain prote         0.000         22.719         2 |                       | 19       881       98.4       5.62         7       920       106.1       9.98         17       619       70.5       9.86         13       3051       330.3       5.08         4       511       56.8       8.68         5       726       80.8       5.92         7       1005       112.5       5.44         4       540       57.9       8.82         5       1905       211.1       6.64         5       51.6       6.05       5.5 |

peptide Exampl

× ScriptTest-(19) ×

٥

MS/MS Spectrum Info


X

▼ 4

# New Scripting Node section in the Help

- New scripting node section in the Help explains how to create nodes from scratch
- PD media includes "User Scripts" folder with example scripts in R, Python, and Java with tutorials on how to run

| Java                                         | 7/29/2019 4:37 AM  | File folder        |       |
|----------------------------------------------|--------------------|--------------------|-------|
|                                              | 7/29/2019 4:37 AM  | File folder        |       |
| R                                            | 7/29/2019 4:38 AM  | File folder        |       |
| Study                                        | 7/29/2019 4:48 AM  | File folder        |       |
| 🗋 .project                                   | 7/16/2019 1:16 AM  | PROJECT File       | 1 KB  |
| README.txt                                   | 7/16/2019 1:23 AM  | Text Document      | 1 KB  |
| 📲 Scripting Node Custom Script Examples.docx | 7/28/2019 10:57 PM | Microsoft Word D   | 80 KB |
| leftest.bat                                  | 7/16/2019 1:16 AM  | Windows Batch File | 1 KB  |





## Scripting Node Poster at ASMS 2019 by Frank Berg et al (MP434)

#### Implementing a Generic Scripting Node to a Standard Proteomics Workflow Processing Software

Frank Berg1; Carmen Paschke1; Kai Fritzemeier1; Pedro Navarro1, Torsten Ueckert1; David Horn2; Bernard Delanghe1, 1Thermo Fisher Scientific (Bremen), GmbH, Bremen, Germany; 2Thermo Fisher, San Jose, CA

#### ABSTRACT

Purpose: Implement an easy-to-use mechanism to enrich workflows with results of non-C# user algorithms in Thermo Scientific™ Proteome Discoverer™ framework.

Methods: Creating a family of preconfigured nodes as well as general mechanisms that integrate the calculation results of arbitrary external executables or scripts into Thermo Scientific™ Proteome Discoverer™ 2.4 software result files.

Results: We show by means of a custom R script that employs the widely used limma package [1] the integration of its results into Proteome Discoverer 2.4 software and use the additional stat results of quantification data to compare them to the built-in Proteome Discoverer 2.4 software statistics algorithms. For this we use the rich set of plots and table presentations in Proteome Discoverer 2.4 software as well as R Studio.

#### INTRODUCTION

Proteome Discoverer software offers flexible analysis of proteomics mass spectrometry measurement data. Analyses are done by customizable workflows of configurable nodes that perform workflow subtasks, e.g., peptide identification, statistical validation or consolidation of protein findings. As of now, custom nodes may be implemented by third parties using a .NET program language (typically C#) against the richly featured Proteome Discoverer API, thus extending the set of factory-provided analysis features. However, for rapid prototyping in context of, e.g., academic teaching or research contexts with compact and fast changing algorithmic ideas written in popular scripting languages like R or python this poses a certain cannon-on-sparrow situation.

Here we present a node family for PD that allows integrating arbitrary executables or scripts into an analysis workflow by using pre-implemented scripting nodes that adhere to a predefined data exchange protocol for external executables, thus providing an easy and fast method to extend workflows with user algorithms

#### MATERIALS AND METHODS

The software was implemented within the Proteome Discoverer 2.4 framework using C#

#### Results

In principle our implementation offers to the user two ways of using a scripting integration in Proteome Discoverer

Predefined post processing scripting nodes for both the consensus and the processing workflow that only need a few parameters and an external script to be ready to go.

· Registration and creation of a custom standalone-node that follows the same principles as described above but additionally involves a registration process in PD. With this it appears as a an "ordinary" workflow node that can also be given away to other users in a standalone fashion.

We now describe the principal mechanisms of doing the data exchange between Proteome Discoverer and an external process as defined by our implementation in the post processing node. Further below, the mentioned registration process is outlined.

The post processing nodes involve the following basic parameters (Figure 1):

Scripting Node Executable and Parameters Path to Executable Command Line Argument

Path to Executable: Location of the executable or script. If only a filename is given the system PATH environment variable is used to find it.

Command Line Arguments: Any additional argument the executable needs.

Requested Tables and Columns: A string that encodes all information about the data tables from the current PD result file that should be provided to the executable. The data is exported as a CSV text export

Prior to executing the script the node provides the requested data in CSV tables and additionally stores a json file named "node\_args.json" (Figure 2) containing meta information about the data




Figure 2. Example of exported Protein data from the PD result file as it is available to the scripting node

The following information is stored in file "node args ison"

- . The path and name of every requested data table file
- . ID information, i.e., information about which columns are ID columns that are needed to insert new data into an existing table and to connect tables.

While the path information is vital to find the exported data, the type description is useful to parse the data values when importing them into a custom executable or script context.

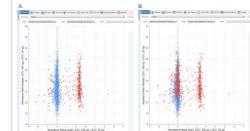
. Type information about any column that is contained in the data table file



After the external executable has calculated its results it may return data to the Proteome Discovere result file. This is done by writing a very similar ison file as "node args.json" named "node\_responde.json" (Figure 3) . This way the executable may perform the following actions.

Add columns to existing tables (but not change existing columns/data Add new tables with arbitrary data

Add connections between tables. These connections may only be made between tables that are not related to each other yet.


#### Case study: Integrating an R script for statistical analysis

To demonstrate the functionality of the scripting node, we implemented an R script using the limm package to calculate protein ratios and corresponding statistical values for a known mixture of human (HeLa) (1:1) and yeast (250ng : 25 ng) proteomes. Data reading and writing of json files (by using the RJSONIO package) are shown in the code snippets in (Figure 4 and 5). After running the scripting node, the data is available in Proteome Discoverer 2.4 and can be plotted using the plotting tools.



table in R by using "node\_args.json" properties. Here the table "Proteins" is imported, catching the index and corresponding abundances (by abundancesType) columns from the node\_args.json file properties. SDataFile of the Table to the outputFilePath

To compare the two different calculations we display the max. Abundance between the samples (in log scale) versus log2 of the sample ratios. The proteins with a significant q-value (< 0.01) are highlighted in red. The oldt of the Proteome Discoverer 2.4 calculated values is shown on the left in Figure 6, values calculated by the R-script using limma package are plotled on the right.



#### **Custom Deployable Scripting Nodes**

As mentioned above the user can deploy a custom version of her scripting node by registering a node in a standalone fashion. Necessary steps are outlined in Figure 8. A special definition file named "node.json" (Figure 7) needs to be provided that contains the following information:

Name, loon and target workflow (consensus or processing

Connection points that define where in the workflow the node can be placed

Parameters to the node. Here standard parameters can be used that are known from ordinary PD

All parameters needed for the scripting mentioned above

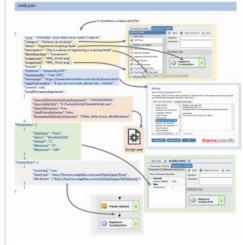



Figure 7. Example "node.json" file that defines the registration of a deployable scripting node

In the parameters section any types of parameters are available that can be used through the .NET API of Proteome Discoverer. The connections section describes a data contract that specifies the allowed connections of the scripting node to other nodes in the workflow.

#### Future Work

The current implementation of the scripting node mechanism involves some limitations that will be addressed in future versions of Proteome Discoverer

1. An access to the study information that corresponds to the current analysis is not yet available.

2. Spectrum filters can not be implemented by scripting nodes



Figure 8. Three-step registration and deployment process for standalone scripting nodes in Proteome Discoveres

#### CONCLUSIONS

We present a family of nodes that allow for rapid prototyping of proteomics algorithms in Proteome Discoverer<sup>TM</sup> 2.4. With these nodes the user can pass data to external executables or scripts and then nport calculation results back into Proteome Discoverer. Moreover, the user can chose to define and register a deployable version of his scripting node for further distribution and sharing with collaborators. We demonstrate the usability by connecting the results of an R script that uses limma [1] to do statistics on a quantification workflow to Proteome discoverer<sup>10</sup>. For this we performed an analysis of proteomics data inspired by [2] and [3]. 12

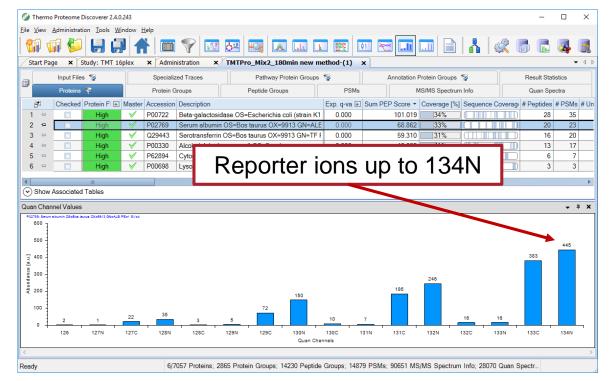
#### REFERENCES

[1] Ritchie ME, Phipson B, Wu D, et al., limma powers differential expression analyses for RNAsequencing and microarray studies. Nucleic Acids Res. 2015;43:e47

[2] Kai Kammers, R guide: Analysis of Cardiovascular Proteomics Data, http://www.biostat.jhsph.edu/~kkammers/software/CVproteomics/R\_guide.html [3] Kai Kammers, D. Brian Foster, Ingo Ruczinski, Analysis of Proteomic Data, In: Manual of Cardiovascular Proteomics Pages 275-292, Springer International Publishing Switzerland 2016

#### TRADEMARKS/LICENSING

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo-Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.






# TMTpro 16 plex support

- New TMTpro 16plex modification
- New table for TMTpro 16 plex correction factors
- New default workflows for TMTpro 16plex

| esidue Mod  | ficatio TMTpro16ples | x/+304.20 | 7 Da 🗸 🛛 K | $\sim$ |      |      |      |      |          |        |        |  |
|-------------|----------------------|-----------|------------|--------|------|------|------|------|----------|--------|--------|--|
| -Terminal M | odific TMTpro16ple:  | x/+304.20 | 7 Da       | $\sim$ |      |      |      |      |          |        |        |  |
| Mass Tag    | Reporter Ion Mass    | -2x13C    | -13C-15N   | -13C   | -15N | Main | +15N | +13C | +15N+13C | +2x13C | Active |  |
| 126         | 126.127726           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ✓      |  |
| 127N        | 127.124761           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ~      |  |
| 127C        | 127.131081           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ~      |  |
| 128N        | 128.128116           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ~      |  |
| 128C        | 128.134436           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ~      |  |
| 129N        | 129.131471           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ✓      |  |
| 129C        | 129.13779            | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ~      |  |
| 130N        | 130.134825           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ~      |  |
| 130C        | 130.141145           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ~      |  |
| 131N        | 131.13818            | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ~      |  |
| 131C        | 131.144499           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | ~      |  |
| 132N        | 132.141535           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | <      |  |
| 132C        | 132.147855           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | >      |  |
| 133N        | 133.14489            | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | >      |  |
| 133C        | 133.15121            | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | >      |  |
| 134N        | 134.148245           | 0         | 0          | 0      | 0    | 100  | 0    | 0    | 0        | 0      | >      |  |
|             |                      |           |            |        |      | 1    |      |      |          |        |        |  |

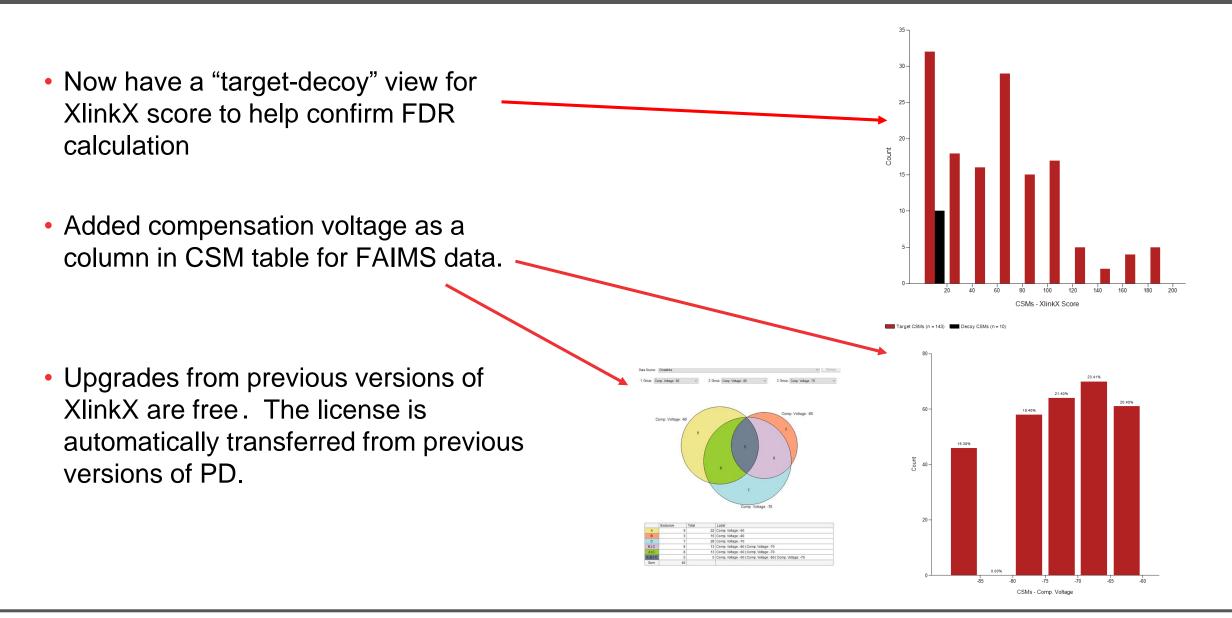


# Flexera licensing

- Same licensing scheme as BioPharma Finder
- Activation now requires a part number and license key
- Upgrades from previous versions with active maintenance are still free (see next slide for instructions on how to upgrade)
- License keys are sent by e-mail (no more lost licenses!)
- No more maintenance license for PD 2.4
- Protein Annotation service is now tied to the Base license with no expiration

| Activation Code                                              |                                                                                                                                                                                                                 |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                              | n code, log in to your account at <u>https://thermo.flexnetoperations.com</u> click <b>Order</b><br>e, and click the order number. Locate the order number in the email message with<br><b>Order is Ready</b> " |  |
| Enter company name, f<br>hree options:                       | full name, email address, product ID and activation code, and then choose one of                                                                                                                                |  |
| • If this computer co                                        | nnects to the Internet, click Online Activation.                                                                                                                                                                |  |
| <ul> <li>If this computer do request file for the</li> </ul> | bes not connect to the Internet, click <b>Offline Activation</b> to create an activation next step."                                                                                                            |  |
| • If you already recei                                       | ived an offline activation response file, click <b>Process Response File</b> to continue.                                                                                                                       |  |
| Company:                                                     | Thermo Fisher Scientific                                                                                                                                                                                        |  |
| Full Name:                                                   | David Horn                                                                                                                                                                                                      |  |
| User Email:                                                  | david.horn@thermofisher.com                                                                                                                                                                                     |  |
| Product ID:                                                  | XCALI                                                                                                                                                                                                           |  |
| Activation Code:                                             | ··                                                                                                                                                                                                              |  |




- 1. Install PD 2.4 on the same system as the previous version of Proteome Discoverer. PD 2.4 now automatically installs with a 60-day demo license without the need for a license key.
- 2. Send an e-mail to <u>ThermoMSLicensing@thermofisher.com</u> with the following information:
  - 1. Name
  - 2. E-mail address
  - 3. Institution
  - 4. Current active maintenance license key from previous PD installation (accessible from Administration->Manage Licenses, selecting the Discoverer Annotation license)
- 3. ThermoMSLicensing will send an e-mail to the e-mail address above with the license key
- 4. Open the Administration->Manage Licenses dialog and click Activate.
  - 1. For the Product ID, type XCALI-98057.
  - 2. For the Activation code, use the code provided by e-mail via ThermoMSLicensing.
- 5. If connected to the network, click Online Activation. If offline, click Offline Activation and follow the instructions to sending the license file to ThermoMSLicensing.



# Proteome Discoverer 2.4 Third Party Node Installer

- MS Amanda 2.0 (IMP Vienna)
- Byonic and Preview nodes (Protein Metrics, Inc.)
- ProSightPD 3.0 (Proteinaceous, Inc.) includes 60-day demo license
- XlinkX for PD 2.4 includes 60-day demo license
- The Byonic and Preview nodes require the associated standalone software to be installed and licensed on the same PC. The Proteome Discoverer installation media includes the latest installers for both and a 30-day demo license key.
- The ProSightPD 3.0 nodes requires the standalone Thermo Scientific<sup>™</sup> ProSightPC<sup>™</sup> 4.1 software to be installed. A demo version can be downloaded from <u>www.proteinaceous.net</u>.





