

ThermoFisher SCIENTIFIC

Využití cílené proteomiky pro kontrolu falšování potravin: identifikace peptidových markerů v mase pomocí LC- Q Exactive MS/MS

Michal Godula Ph.D. Thermo Fisher Scientific

Meat Substitution

Meat Substitution

Motivation : \$\$\$

 Addition of meat from undeclared species to a specific meat product in order to lower production cost and increase profitability

Cost per kg: Horse meat << Beef meat

An international issue

- It is economic fraud
- It represents health issues due to specific dietary restrictions
- It is an ethical problem
- It is also an important cultural and religious issues

How testing is done?

- Two-dimensional polyacrylamide gel electrophoresis and western-blot analysis
- Qualitative Real-Time PCR
- Enzyme-linked immunosorbent assay (ELISA)

Challenges

- These methods are mostly qualitative
- Molecular information obtained is limited
- Data can't be revisited post-acquisition for data mining
- They are not generic approaches and need to be heavily customized

High Resolution Accurate Mass

- Can perform the same level of quantitation as MS/MS
- Selectivity obtained by accurate mass measurement (only m/z needed)
- Less false positives and negatives
- No need to setup instrument (SRM) before analysis
- Unlimited number of compounds in a run perfect for screening
- Automated data processing

Q Exactive[™] MS - a 3D View

Why Bottom-up Proteomics Workflow Is An Interesting Option To Develop An MS Based Assay?

All life forms are related by common ancestry and descent. The construction of phylogenies provides explanations of the diversity seen in the natural world.

Today, phylogenies are usually constructed using **DNA sequence data**.

Relationship <u>between genes and</u> <u>species</u> is central for meat speciation

Traditional Peptide Fingerprinting Approach Using MS

Peptide Mass Fingerprinting

marker	species	protein	biomarker peptide sequence	marker	species	protein	biomarker peptide sequence
1	pig/horse	troponin T/unknown	YDIINLR	7	horse	pyruvate kinase	IYVDDGLISLQVK
2	pig	myosin-4	TLAFLFAER	8	horse	hemoglobin	FLSSVSTVLTSK
3	horse	myosin-2	EFEIGNLQSK	9	horse	myoglobin	HGTVVLTALGGILK
4	pig	myosin-1 and myosin-4	SALAHAVQSSR	10	horse	myoglobin	VEADIAGHGQEVLIR
5	horse	myoglobin	YLEFISDAIIHVLHSK	11	horse	myosin-1	LVNDLTGQR
6	horse	myosin-1 and myosin-2	VVETMQTMLDAEIR	12	cattle	myosin-1	TLALLFSGPASGEAEGGPK
	Unspecific signals						

What Are The Main Limitations Of This Analytical Approach?

- It relies heavily on the quality of the MS and MS/MS data
- It strongly relies on bioinformatics and parameterizations
 - It requires highly skilled scientists to obtain comprehensive results

Is this really appropriate for implementation in a routine food analysis laboratory ?

Can we propose alternative strategies ?

Targeted Bioinformatics Analysis Example: Myoglobin

How Bottom-up Proteomics Can Be Used For Meat Speciation

Bottom-up Proteomics Sample Preparation

- 1. Meat sample mixed with water (1:5) is homogenized and the mixture is sonicated
- 2. Proteins in the suspension are precipitated with acetone (1:1)
- 3. Acetone is discarded and the generated protein pellet is dryed to remove all traces of acetone.
- 4. Protein pellets are dissolved in ammonium bicarbonate (pH 8.5).
- 5. Proteins are denatured by heating at 120°C
- 6. Reduced with Dithiothreitol (DTT) and alkylated with Iodoacetamide IAA
- Proteomic grade <u>trypsin</u> is added and the reaction is performed at 40°C for 24h. Trypsin cleavage occurs after basic amino acids : Lys (K) & Arg (R)

Each Targeted Peptides Can Be Detected And Extracted From Tics

Data Dependent MS/MS Used For Targeted Work

Extracted ion chromatogram at y_{14} or $y_{13} \pm 5$ ppm

Tryptic Digestion Optimization

After 1h, peptides can be detected. At 4h, we observed 30-40% of the maximum abundance.

Chromatograms From Beef Meat Sample Spike With 1 % Pork Meat

Routine Practive

Conclusions

Targeted bottom-up proteomics approach can be applied for meat species detection down to 0.1% w/w

Quick and simple workflow for any laboratory

High resolving power (140.000 FWHM) was needed to obtain sufficient selectivity

- Isotopically labelled peptides recommended for routine control
- Tested in routine applying HPLC-Q Exactive

Special Thank you to **dr. Francis Beaudry** and dr. **Alberto Ruiz** from the Université de Montréal, Canada for providing the data

Food Additives & Contaminants: Part A

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/tfac20</u>

Assessment of meat authenticity using bioinformatics, targeted peptide biomarkers and high-resolution mass spectrometry

Alberto Ruiz Orduna^a, Erik Husby^b, Charles T. Yang^b, Dipankar Ghosh^b & Francis Beaudry^a

^a Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada

^b Department of Environment & Food Safety, Thermo Fisher Scientific, San Jose, CA, USA Published online: 04 Aug 2015.

DOI: 10.1080/19440049.2015.1064173

Webinar: Thermo Fisher Scientific Meat Adulteration Resource

Webinar

Video

Meat Species Determination and Adulteration Detection using High-Resolution Mass Spectrometry and Proteogenomic Strategy

A new strategy is presented for identifying meat adulteration and authenticity by merging bioinformatics and a targeted bottom-up proteomic approach using LC coupled to Orbitrap HRAM mass spectrometry. Sample Preparation for Meat Species Determination and Adulteration using High-Resolution Mass Spectrometry

Learn how to carry out each of the sample preparation steps required for preparing meat samples prior to analysis by LC coupled to Orbitrap HRAM MS.

