

Thermo Fisher SCIENTIFIC

Latest developments in elemental analysis - Introducing the Thermo Scientific iCAP TQ ICP-MS

Simon Lofthouse, Sales Support Expert, TEA, EMEA (simon.lofthouse@thermofisher.com)

Introducing our ICP-MS portfolio

Introducing our ICP-MS portfolio

Thermo Fisher SCIENTIFIC Redefining trace element analysis - triple quadrupole ICPMS

All the Power, None of the Complexity

Advanced interference removal
 Robust design for routine analysis
 Integrated automation options
 Flexible for advanced applications
 Unique ease of use – Reaction Finder

Triple quadrupole accuracy with single quadrupole ease of use

iCAP TQ ICP-MS: How it works - on mass reaction mode

Yb in Gd matrix

- Calibration 0-5ppb Yb in 10ppm Gd no gas
- Calibration 0-5ppb Yb in 10ppm Gd KED
- NH₃ reacts with many of the polyatomic ions that interfere with the REE however NH₃ also reacts quickly with some REE.
- Pr, Eu, Dy, Ho, Er, Tm and Yb are less reactive with NH₃

Yb measurement in 10pm Gd – TQ NH₃

- Sensitivity 7100 cts/ppb
- BEC 0.05 ppb
- IDL 0.0001ppb

- Measure Yb on mass at 172
- NH₃ flow 0.9ml/min

iCAP TQ ICP-MS: How it works - product ion reaction mode

1ppb Ti – TQ and SQ modes (Oxygen)

1ppb Ti – TQ – mass shift oxygen

All the **Power**, None of the **Complexity**

- Problem: when faced with measurement of a sample where interferences are expected, which is the best measurement mode?
- Solution: method development assistant Reaction Finder
 - Software concept for intelligent selection of all 3 parameters
 - Just select the element for analysis and the software does the rest

Reaction Finder method development assistant

Reaction Finder in Thermo Scientific[™] Qtegra[™] ISDS Software

Reaction Finder is a supplied applet that preselects optimised conditions for each target isotope in each available mode

For example for ³¹P, the Reaction Finder database defines the following method parameters:

Analyte type 🛛 🕇	Analyte 🏾	Is default isotope 🛛 🕇	Reaction gas	Q1 mass (u) 🛛 👅	Q3 analyte 🛛 🖷	Is default Q3 Analyte 🛛 🕇	Is default reaction
Isotope	31P	>	O ₂ (Oxygen)	30.9737634	31P		II. 7
Isotope	31P	✓	O ₂ (Oxygen)	30.9737634	31P.16O	✓	
Isotope	31P	~	O ₂ (Oxygen)	30.9737634	31P.17O		
Isotope	31P	~	O ₂ (Oxygen)	30.9737634	31P.18O		
Isotope	31P	~	O ₂ (Oxygen)	30.9737634	31P.16O2		
Isotope	31P	~	O ₂ (Oxygen)	30.9737634	31P.17O.16O		
Isotope	31P	~	O ₂ (Oxygen)	30.9737634	31P.18O.16O		
Isotope	31P	~	O ₂ (Oxygen)	30.9737634	31P.17O2		
Isotope	31P	~	O ₂ (Oxygen)	30.9737634	31P.18O.17O		
Isotope	31P	~	O ₂ (Oxygen)	30.9737634	31P.18O2		
Isotope	31P	~	H₂ (Hydrogen)	30.9737634	31P		—
Isotope	31P	~	H₂ (Hydrogen)	30.9737634	31P.1H4	v	
Isotope	31P	~	None (No reaction gas)	30.9737634	31P	v	
Isotope	31P	>	He (Helium)	30.9737634	31P	~	I
a subscription of the second		الاستجار الريافية مستعرياتهم	a second of the second	and a state of the	البور وتناسبني بالمتحاك	And a design of the second second	and a state of the

None of the complexity, all of the flexibility:

- Default reactions for all modes of iCAP TQ ICP-MS operation including collision/ reaction gases such as O₂, H₂, NH₃ and He
- Dedicated mass flow controller for each cell gas

iCAP TQ ICP-MS – Feature summary

Intuitive quick-connect sample introduction components

Bench level pop-out interface for easy ambidextrous access to the cones

and

the extraction lens for simplest possible routine maintenance

...without needing to break the vacuum

Ion focusing: the RAPID lens

Right

Angle

Positive

lon

Deflection

90° ion focusing with total ion deflection in 3 dimensions

and

Elimination of neutral species

for

Highest signal to noise ratio of any ICP-MS

Redefining trace element analysis – application areas

Meeting human health and environmental challenges

Advancing development in metals, materials and chemicals

- Clinical Research and Toxicology
- Metallopharmaceuticals
- Environmental Analysis/Monitoring
- Food Safety

- Material Analysis
- Nanoparticle Characterization
- Metallurgy
- Energy Production

Arsenic and selenium in environmental samples

As and Se analysis in the presence of REE's – the problem

Usual interferences on As and Se - Ar_2 , ArCl - easy to remove using He KED, but if REE are present...

As and Se analysis in the presence of REE's: the iCAP TQ solution

91[AsO]+ 94[SeO]+ 150Nd++, 150Sm++ 156Gd++, 156Dv++ Control ions entering the collision Q3 set to product ion mass cell using Q1 Use O₂ to efficiently convert As and Q2 filled with 75As+ → 91[AsO]+ ⁷⁸Se⁺ → ⁹⁴[SeO]⁺ reactive gas (O_o) Se to AsO⁺ and SeO⁺ in Q2 (i.e. the collision cell) ¹⁵⁶Gd⁺, ¹⁵⁶Dy⁺, ⁹⁴Mo⁺ ¹⁵⁰Nd⁺, ¹⁵⁰Sm⁺, ⁹¹Zr⁺ Q1 set to analyte mass REE⁺⁺ species don't react • 75As+ 78Se+ ⁷⁵As Method ⁷⁸Se Method Type Selectively detect AsO⁺ (at mass to remove remove 91) and SeO⁺ (at mass 94) free from Polyatomic 40Ar35Cl ⁴⁰Ar³⁸Ar **KED** KED, H₂ REE⁺⁺ interference, using Q3 40Ca35Cl

Isobaric

¹⁵⁰Nd²⁺

¹⁵⁰Sm²⁺

 O_2

¹⁵⁶Gd²⁺

¹⁵⁶Dv²⁺

to

 O_2

As and Se with REE present - results in different modes

Interference removal capability in each mode

- 1ppm Dy, Gd, Nd, Sm and Tb added
- Increased BECs observed for all SQmodes due to unresolved doubly charged REE interferences
- Hydrogen is suitable for removing Ar based polyatomics, but is not capable of fully removing REE²⁺ interferences
- TQ-O₂ mode shows dramatically lower
 BEC values for both As and Se
- Accuracy assessed by analysis of AGV andesite reference material and a deep sea sediment
- Spike recovery tests also performed

Proving the accuracy of the analysis

Sample analysis results

Spike recovery in REE matrix solution (1 ppb As and Se)

Spike recovery results in samples (1 ppb As and Se)

Analyte	AGV-1	Sediment
Arsenic	94.6 %	97.6 %
Selenium	93.4 %	97.6 %

Multi-element results: River water reference material (NRC SLRS-5)

Analyte	Measurement Mode	Measured µg/L	Certified Concentration	Recovery %
²³ Na	KED	5085	5380	95
²⁴ Mg	KED	2665	2540	105
²⁷ AI	KED	55.3	49.5	112
³⁹ K	KED	863	839	103
⁵⁶ Fe	KED	93.2	91.2	102
⁵⁹ Co	KED	0.05	0.05	107
⁶⁰ Ni	KED	0.52	0.48	110
⁶³ Cu	KED	18.2	17.4	105
⁷⁵ As	TQ-O2	0.43	0.41	104
⁷⁸ Se	TQ-O2	0.10		
²⁰⁸ Pb	KED	0.08		
²³⁸ U	KED	0.10	0.09	109

Determination of trace elements in metals and alloys

- Se analysis using ICP-MS
 - Elevated 1st ionization potential → low ion yield
 - Main isotopes affected through Ar based polyatomics
 - Additional Ni interferences on all Se isotopes
 - Potential for additional interferences in case
 Br is present

ion	lsotope m/z	Abundance (%)
l	74	0.90
	76	9.00
cted	77	7.60
	78	23.60
	80	49.70
	82	9.20

- Se analysis using ICP-MS
 - Elevated 1st ionization potential → low ion yield
 - Main isotopes affected through Ar based polyatomics
 - Additional Ni interferences on all Se isotopes
 - Potential for additional interferences in case
 Br is present

n	lsotope m/z	Abundance (%)	Normal Matrix Interference
	74	0.90	
	76	9.00	40 _{Ar} 36 _{Ar} +
ed	77	7.60	⁴⁰ Ar ³⁷ Cl ⁺
	78	23.60	⁴⁰ Ar ³⁸ Ar ⁺ , ⁷⁸ Kr ⁺
	80	49.70	⁴⁰ Ar ⁴⁰ Ar ⁺ , ⁸⁰ Kr ⁺
	82	9.20	⁸² Kr ⁺

KED or H₂

- Se analysis using ICP-MS
 - Elevated 1st ionization potential → low ion yield
 - Main isotopes affected through Ar based polyatomics
 - Additional Ni interferences on all Se isotopes
 - Potential for additional interferences in case
 Br is present

lsotope m/z	Abundance (%)	Normal Matrix Interference	Additonal Ni Matrix Interference
74	0.90		⁵⁸ Ni ¹⁶ O ⁺
76	9.00	40 _{Ar} 36 _{Ar} +	60 _{Ni} 16 _O +
77	7.60	⁴⁰ Ar ³⁷ Cl ⁺	⁶⁰ Ni ¹⁶ O ¹ H ⁺
78	23.60	⁴⁰ Ar ³⁸ Ar ⁺ , ⁷⁸ Kr ⁺	62 _{Ni} 16 _O +
80	49.70	⁴⁰ Ar ⁴⁰ Ar ⁺ , ⁸⁰ Kr ⁺	⁶⁴ Ni ¹⁶ O ⁺
82	9.20	⁸² Kr ⁺	⁶⁴ Ni ¹⁸ O ⁺ , ⁶⁴ Ni ¹⁶ O ¹ H ⁺

 $\begin{array}{cc} \text{KED or } \text{H}_2 & \text{O}_2 \text{ conversion} \\ & \text{into SeO} \end{array}$

- Se analysis using ICP-MS
 - Elevated 1st ionization potential → low ion yield
 - Main isotopes affected through Ar based polyatomics
 - Additional Ni interferences on all Se isotopes
 - Potential for additional interferences in case
 Br is present

	lsotope m/z	Abundance (%)	Normal Matrix Interference	Additonal Ni Matrix Interference	Additonal Bromine Interference
	74	0.90		⁵⁸ Ni ¹⁶ O ⁺	
	76	9.00	40 _{Ar} 36 _{Ar} +	⁶⁰ Ni ¹⁶ O ⁺	
t	77	7.60	⁴⁰ Ar ³⁷ Cl ⁺	⁶⁰ Ni ¹⁶ O ¹ H ⁺	
	78	23.60	40 _{Ar} 38 _{Ar} +, 78 _{Kr} +	62 _{Ni} 16 _O +	
	80	49.70	⁴⁰ Ar ⁴⁰ Ar ⁺ , ⁸⁰ Kr ⁺	⁶⁴ Ni ¹⁶ O ⁺	⁷⁹ Br ¹ H ⁺
	82	9.20	⁸² Kr ⁺	⁶⁴ Ni ¹⁸ O ⁺ , ⁶⁴ Ni ¹⁶ O ¹ H ⁺	⁸¹ Br ¹ H ⁺

KED or H_2 O_2 conversion into SeO KED or H₂ don't help

Interference removal using SQ-ICP-MS

Sample: Se in 100 ppm Ni

 As all primary ions enter the CRC, new interferences including water adducts are observed

	0	200	400 Cor	600 ncentration [ng/l]	800	1000	1200
2	2 2				Į		
19401) Tota							-
	Į 			<u> </u>			

Ion Mass	Identifier	Interference
92	76 _{Se} 16 _O +	⁵⁸ Ni ¹⁶ O(H ₂ O) ⁺
93	77 _{Se} 16 _O +	⁵⁸ Ni ¹⁶ O(H ₃ O) ⁺
94	78 _{Se} 16 _O +	${}^{60}\text{Ni}{}^{16}\text{O}(\text{H}_{2}\text{O})^{+}, {}^{58}\text{Ni}{}^{18}\text{O}(\text{H}_{2}\text{O})^{+}$
96	⁸⁰ Se ¹⁶ O ⁺	${}^{62}\text{Ni}{}^{16}\text{O}(\text{H}_{2}\text{O})^{+}, {}^{60}\text{Ni}{}^{18}\text{O}(\text{H}_{2}\text{O})^{+}$
98	82 _{Se} 16 _O +	${}^{64}\text{Ni}^{16}\text{O}(\text{H}_2\text{O})^+, {}^{62}\text{Ni}^{18}\text{O}(\text{H}_2\text{O})^+$

Interference removal using TQ-ICP-MS

Only initial separation of lower mass ions enables effective and complete removal of all interferences on Se – using both H_2 and O_2 reactive gases

Interference removal using TQ-ICP-MS

Only initial separation of lower mass ions enables effective and complete removal of all interferences on Se - using both H_2 and O_2 reactive gases

Mode/Isot ope	Sensitivity BEC [cps·L·µg ⁻ [ng·L ⁻¹] ¹]		IDL [ng·L ⁻¹]
	TQ	-H ₂	
⁷⁸ Se	4,500	46.5	12.9
⁸⁰ Se	9,700	38.9	10.5
	TQ	-O ₂	
⁷⁸ Se	1,000	47.8	18.8
⁸⁰ Se	2,200	13.2	5.10

Determination of Ti in biological samples using ICP-MS

Titanium based components used for orthopedic and dental implants.

Degradation of these implants releases Ti (and Co, Ni and Cr too) into the body

⁴⁸Ca⁺, PO⁺, SO⁺, SOH⁺ interference on Ti isotopes

HR-ICP-MS effective technique, but expensive

Determination of Ti in biological samples using ICP-MS

- Preliminary work started to measure titanium in hip samples, via serum samples
- Three modes compared:- He KED, SQ NH₃ and TQ NH₃
- Aim: To test if TQ mode gives low enough LOQ to enable determination of the normal Ti levels in patient samples
- Lowest LOQ only possible with Ti isotope at m/z 48 (abundance 73.8%), but serum high in Ca (⁴⁸Ca interference
- Solution: Use ammonia as the reaction gas to isolate m/z 48 Ti from Ca

Reaction of Ti with NH₃: how it works

 Q1 – set to transmit Ti, potential interferents on the product ion (e.g. ¹¹⁴Cd) and lower mass interference precursors (e.g. ³¹P, ¹⁶O) rejected.

• Q2 – filled with NH_3 . Ti collides and generates a range of adducts including ${}^{48}\text{Ti}(NH_3)_3NH^+$ at mass 114

 Q3 – set to transmit mass 114, other masses rejected.

Comparison of different ICP-MS modes for Ti analysis

Sample matrix - 1:10 diluted serum plus 1ppm Cd, all data in µg/L

Sample i.d.	He KED mode, on mass at ⁴⁸ Ti	Ti SQ NH ₃ mode, at mass 114	Ti TQ NH ₃ mode, at mass 114	Ti reported value, measured at ⁴⁷ Ti using HR-ICP-MS
Serum L-1	167	1800	6.64	6.8
Serum L-1	262	1850	6.38	6.8
⁴⁸ Ca inte residu	rference plus al PO⁺ etc.	Contr	ibution from	¹¹⁴ Cd

Only TQ NH₃ mode is capable of providing the correct Ti result

Standard mode (i.e. no cell gas) with SQ operation

He KED single quadrupole mode with cell pressurised with He and KED applied

TQ $NH_3 / H_2 / O_2$ triple quadrupole mode with CRC pressurised with reaction gas Q1 set to analyte mass and Q3 set to either analyte mass (on mass analysis) or product ion (mass shift analysis)

- Flexibility and usability of both single and triple quadrupole modes
 - Full multielemental analysis with dedicated TQ interference removal for difficult analytes and simple He KED mode for everything else **in one analytical run**

Redefining TQ-ICP-MS - accessories

Fully integrated autosampler and autodilution solutions

Elemental Scientific prepFAST

CETAC SDX_{HPLD}

Fully integrated speciation (IC and LC) and laser solutions

Questions?

thermoscientific

www.thermofisher.com/iCAPTQ

www.thermofisher.com/TQ-ICP-MS

Thermo Scientific iCAP TQ ICP-MS

Redefining triple quadrupole ICP-MS with unique ease of use